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SI* (MODERN METRIC) CONVERSION FACTORS 
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol 
LENGTH 

in inches 25.4 millimeters mm 
ft feet 0.305 meters m 
yd yards 0.914 meters m 
mi miles 1.61 kilometers km 

AREA 
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha 
mi2 square miles 2.59 square kilometers km2

VOLUME 
fl oz fluid ounces 29.57 milliliters mL 
gal gallons 3.785 liters L 
ft3 cubic feet 0.028 cubic meters m3 

yd3 cubic yards 0.765 cubic meters m3 

NOTE: volumes greater than 1000 L shall be shown in m3

MASS 
oz ounces 28.35 grams g
lb pounds 0.454 kilograms kg
T short tons (2000 lb) 0.907 megagrams (or "metric ton") Mg (or "t") 

TEMPERATURE (exact degrees) 
oF Fahrenheit 5 (F-32)/9 Celsius oC 

or (F-32)/1.8 
ILLUMINATION 

fc foot-candles 10.76 lux lx 
fl foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS 
lbf poundforce   4.45    newtons N 
lbf/in2 poundforce per square inch 6.89 kilopascals kPa 
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Symbol When You Know Multiply By To Find Symbol 

LENGTH
mm millimeters 0.039 inches in 
m meters 3.28 feet ft 
m meters 1.09 yards yd 
km kilometers 0.621 miles mi 

AREA 
mm2 square millimeters 0.0016 square inches in2 

m2 square meters 10.764 square feet ft2 

m2 square meters 1.195 square yards yd2 

ha hectares 2.47 acres ac 
km2 square kilometers 0.386 square miles mi2 

VOLUME 
mL milliliters 0.034 fluid ounces fl oz 
L liters 0.264 gallons gal 
m3 cubic meters 35.314 cubic feet ft3 

m3 cubic meters 1.307 cubic yards yd3 

MASS 
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 lb) T 

TEMPERATURE (exact degrees) 
oC Celsius 1.8C+32 Fahrenheit oF 

ILLUMINATION 
lx  lux 0.0929 foot-candles fc 
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS 
N newtons 0.225 poundforce lbf 
kPa kilopascals 0.145 poundforce per square inch lbf/in2
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FRAMEWORK AND METHODOLOGY FOR RISK-BASED BRIDGE AND 
TUNNEL ASSET MANAGEMENT: OBJECTIVE RISK ASSESSMENT 

AND NETWORK LEVEL EVALUATION 

EXECUTIVE SUMMARY 

INTRODUCTION 

This report presents the results of the project on establishing a general framework and 
methodology for risk-based bridge and tunnel asset management. The research was carried out at 
Portland State University in collaboration with engineers and officials at Oregon Department of 
Transportation (ODOT) and Federal Highway Administration (FHWA). The primary goal of the 
research is to achieve risk-based transportation asset management based on (a) objective and 
consistent risk assessment and (b) effective prioritization and optimization of intervention 
strategies. This report presents methods and findings in the base phase (Phase I) of the project, 
which is focused on the objective and consistent risk assessment suitable for network-level 
transportation asset management. Specifically, the following three tasks were conducted to fulfill 
the general goal of Phase I: 

• Establish methodology for objective risk assessment due to deterioration and extreme events; 
• Achieve objective agency risk assessment in transportation asset management systems; 
• Develop effective and efficient approaches to network-level user risk assessment. 

BACKGROUND 

Management of critical transportation assets such as bridges and tunnels has traditionally focused 
on condition preservation through carefully planned life-cycle activities within a budgetary limit. 
Such plans are enacted to impede deterioration and/or accommodate increasing demand. Although 
there are calls to consider various risks from extreme events, existing approaches to risk 
assessment in transportation asset management rely heavily on engineering judgement, past 
experience, and limited data indicators that roughly correlate with hazard intensities, bridge 
vulnerabilities, and damage consequences. Existing approaches score and weight hazard types and 
vulnerabilities that compete against other bridge needs. This subjective or empirical approach to 
risk assessment contrasts to more objective methods that are underpinned by quantitative models 
of hazards, vulnerabilities, and consequences. Nonetheless, these quantitative models do not fully 
consider the effects of deterioration on structural vulnerability under extreme events, thus 
hindering their direct application in transportation asset management. 

The gap between transportation asset management and objective risk assessment leads to (a) 
inconsistency between risks assessed by different agencies or different experts and (b) neglect or 
inaccurate estimates of risks compounded by asset deterioration. As a result, resources may be 
allocated inefficiently due to (a) unreliable estimates of project benefits and (b) lack of 
coordination between condition preservation and risk mitigation needs. This project aims to 
resolve this issue by presenting a unified framework for risk-based transportation asset 
management, focusing on critical transportation structures such as bridges and tunnels. 
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Phase I of the project was started with the establishment of a general methodology to unify the 
assessments of structural deterioration and risks under extreme events. Direct economic risk to an 
agency and indirect societal risk to road users were then considered respectively. For agency risk 
assessment, the focus was on the viability and implications of objective risk assessment in 
transportation management (in particular, bridge management systems). For user risk assessment, 
the pivot was to develop new methods to overcome computational challenges during risk 
assessment related to system performance after hazard events and subsequent bridge damage. 
These challenges arise because the roles of different assets to system performance are 
interdependent among networked assets. Findings from the research work are presented below.  

FINDINGS 

Risk due to Deterioration and Extreme Events 

To unify deterioration and risk assessments, deterioration-induced service disruption can be treated 
as a hazard and integrated with risk assessment under extreme events. In this manner, total lifetime 
risk from deterioration and extreme events is determined to facilitate risk-based transportation 
asset management. The formulated assessment methodology is underpinned by objective risk 
assessment consistent with other frameworks for modeling infrastructure risk and resilience. 
Integrated risk assessment, as described in this project, is also able to consider exacerbated extreme 
event risk due to structural deterioration. 

Input needs for this new methodology are clarified. Specifically, to estimate deterioration risk, the 
input data and models include (a) deterioration models with respect to asset condition states or 
ratings, (b) probabilities of service disruption corresponding to different condition ratings, and (c) 
cost estimates for deterioration-induced service disruption. For extreme event risk, objective risk 
assessment relies on (a) hazard characterization curves (i.e., rate vs. intensity), (b) fragility 
functions of different structural archetypes for various damage states, and (c) cost estimates 
associated with different damage states. Potential sources and methods to obtain these inputs are 
detailed in the report. Data and knowledge gaps are identified, including standardized procedures 
to derive service disruption probabilities, lack of widely accepted fragility curves of deteriorated 
assets, reliable cost estimates for deterioration-induced service disruption, and sufficient data for 
non-seismic extreme events. 

Objective Risk Assessment within Transportation Asset Management Systems 

Rather than rely on experts to elicit hazard scenarios considered in risk assessment, a new approach 
is developed to automatically generate these hazard scenarios weighted by their importance to 
objective risk assessment. These weighted scenarios can be directly used in existing bridge and 
tunnel management systems. As the new approach is based on the rigorous formulation of risk 
integrals, the risk can be accurately and consistently estimated based on hazard characteristics, 
structural fragility, and damage consequences. Given the same number of hazard scenarios, Figure 
1(a) shows the comparison between the risks estimated with the new method and with an existing 
analytical method within the reasonable capability of modern BMSs (termed the BMS approach). 
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Measured against the benchmark value obtained from a full probabilistic seismic risk analysis1, 
the approach described in this document shows greater accuracy than the existing approach.  

Additionally, the new approach can handle the interaction between structural deterioration and 
structural fragility under extreme events. As a result, it can be used to better quantify the benefit 
of life-cycle plans in terms of risk reduction under extreme events. The study compared two 
hypothetical life-cycle plans (i.e., maintenance sequences to restore pristine conditions) to 
demonstrate the implications of accurate risk assessment on asset management. Figure 1(b) 
presents the benefit-to-cost ratios of both plans, evaluated based on the new and the existing risk 
assessment approaches respectively. The comparison indicates that existing approach may not 
deliver reliable rankings of different life-cycle plans. 

  
Figure 1 Benefit of objective risk assessment: (a) more accurate risk assessment and (b) 

more reliable comparison between life-cycle plans. 

Mobility Risk Assessment for Large-Scale Transportation Networks 

Indirect consequences to road users may exhibit the so-called network effect when the failure 
consequences of multiple assets greatly exceed the sum of failure consequences of individual 
assets. Examples include connectivity to public services, freight capacity within or throughput 
across a region, and extra travel cost due to congestion and detour. The need to simultaneously 
consider all asset conditions creates a significant computational challenge. In this project, an 
effective and efficient method is developed for indirect risk assessment involving network effects.  

Compared to existing methods, the advantage of the new method lies in its abilities to handle large-
scale systems with hundreds to thousands of assets and to robustly estimate risk dominated by a 
small number of low-probability, high-consequence events involving network effects. The 
effectiveness of the new method is demonstrated through a number of analytical examples and a 
real-world case study on the Oregon highway network. Based on the results from the analytical 

 
 
1 A full probabilistic seismic risk analysis refers herein to the evaluation of risk integral considering all possible 

intensity measure levels (return periods) of an extreme event and likely damage states of an asset due to the event. 
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examples, Figure 2(a) shows the accuracy of the new method in comparison to the benchmark and 
the results obtained from several existing methods. 

In addition to assessing risk, the new method is also capable of identifying routes and assets that 
contribute the most to the network risk, thereby offering insights to intervention prioritization. 
Based on the case study results, Figure 2(b) presents the identified routes with bridges that 
significantly impact the network risk in terms of traffic throughput across the State of Oregon. 
Note that the results in Figure 2(b) hinges on several assumptions, e.g., the probabilities of service 
disruption for different bridges. Therefore, the results herein are for illustration purposes only and 
should not be considered as the exact vulnerable assets within the Oregon highway network. 

  
Figure 2 New method for indirect risk assessment: (a) effectiveness in assessing risk 

dominated by low probability, high consequence events (results from analytical examples) 
and (b) identified high-risk routes in Oregon highway network1 (results from case study). 

NEXT STEPS 

Continuing with the Phase I study, Phase II of this project should focus on the validation of case 
study results related to network risk assessment. The validation process will examine and improve 
the various assumptions adopted in Phase I illustration. The identified links crucial to the system 
performance will be compared with the critical links established empirically by the Oregon 
Department of Transportation. Overlapping and differences should be investigated. 

For future studies built upon this project, considerable efforts should be put into (a) the calibration 
of service disruption probabilities associated with deteriorated assets and (b) the establishment of 
time- or condition-based fragility curves that consider the effect of deterioration on structural 
vulnerability under extreme events. 

 
 
1 The results presented herein are limited by several assumptions, including assumed disruption probabilities for 

different links with bridges. The results are presented herein to illustrate the new method and should not be 
regarded as the true risk related to the Oregon highway network. 
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The project primarily uses earthquake hazards as an example of applying the framework and 
methodology, partly due to the relatively mature hazard, vulnerability, consequence models 
compared to non-seismic events. Nonetheless, the same approaches should be applicable to other 
hazards relevant to transportation systems such as floods and hurricanes. It is also worthwhile to 
explore other transportation performance indicators such as accessibility to critical services after 
disasters. 
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CHAPTER 1 

INTEGRATING OBJECTIVE RISK ASSESSMENT AND TRANSPORTATION ASSET 
MANAGEMENT 

1.1 INTRODUCTION 

Bridge and tunnel asset management has traditionally focused on the condition preservation of a 
large stock of structures through carefully planned life-cycle activities within a budgetary limit 
(including inspections, maintenance, rehabilitation, and replacement). Such plans are enacted to 
impede deterioration and/or accommodate increasing demand. Although there are calls to consider 
risks from extreme events during life-cycle planning, existing approaches to risk assessment in 
transportation asset management (TAM) relied heavily on engineering judgement and past 
experience within a transportation agency (Western et al. 2016). The results from these approaches 
may, thus, vary due to personnel turnover and institutional changes. 

The subjective approaches to risk assessment in TAM contrast to more objective approaches 
commonly used in several frameworks for risk assessment and resilience quantification, e.g., 
HAZUS developed by FEMA (2023) and IN-CORE developed by NIST (2023), among others. In 
these frameworks focusing on extreme events, risks are derived from physics-based and/or 
empirical quantitative models of hazards, vulnerabilities, and consequences, thereby allowing 
objective risk assessment with a minimum amount of subjectivity. Nonetheless, these risk 
assessment frameworks do not fully consider the deteriorated conditions of transportation assets1, 
even if deterioration may affect the structural vulnerability (i.e., fragilities) under extreme events. 
For instance, HAZUS models do not consider the deterioration of bridge substructure, though the 
cracking and spalling of concrete cover due to rebar corrosion can significantly alter the seismic 
fragility curves (Bhandari 2023). 

The gap between transportation asset management and hazard risk assessment leads to (a) 
inconsistency between risks assessed in TAM and common risk assessment frameworks and (b) 
neglect of extreme event risk compounded by asset deterioration. As a result, resources for 
transportation infrastructure may be allocated inefficiently due to the lack of coordination between 
condition preservation and risk mitigation needs. This project aims to resolve this issue by 
developing a unified framework for risk-based transportation asset management, focusing on 
critical transportation structures such as bridges and tunnels. To achieve this, Chapter 1 first 
introduces: 

• a new perspective to consider asset deterioration using the concept of deterioration risk; 
• a novel approach to integrating asset management goals and risk minimization principles. 

 
 
1 These methods do sometimes consider the implications of structural age on fragilities. This is mainly implemented 

to reflect the predominant design guidelines, which affect structural vulnerability under hazards. However, all 
assets are treated as if they are newly constructed based on the then predominant design guidelines and do not 
experience any deterioration in their service life. 
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1.2 OBJECTIVE RISK ASSESSMENT FROM ADVERSE EVENTS 

The framework is built upon the objective risk assessment approaches in previously mentioned 
hazard analysis frameworks. In these frameworks, risk associated with an adverse event, 
commonly referred to as a risk integral, is expressed as follows (Basöz & Mander 1999; McGuire 
2004; Baker et al. 2021): 

 
Equation 1.1 Risk integral (discrete damage states and average consequence) 

where a lower-case variable (𝑖𝑖𝑖𝑖 and 𝑑𝑑𝑑𝑑) = sample from a random variable (represented by its 
upper-case counterparts, 𝐼𝐼𝐼𝐼 and 𝐷𝐷𝐷𝐷); 𝐼𝐼𝐼𝐼 = intensity measure (IM) of an adverse event; 𝜆𝜆𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖) 
= annual rate of exceeding 𝑖𝑖𝑖𝑖 (a specific value for the intensity measure, referred hereafter as an 
intensity level), and |𝜆𝜆𝐼𝐼𝐼𝐼′ (𝑖𝑖𝑖𝑖)| becomes the absolute value of the gradient of 𝜆𝜆𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖); 𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼 = 
damage states (DSs) conditioned on the intensity measure; 𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑖𝑖)  = probability of a 
specific DS 𝑑𝑑𝑑𝑑  conditioned on a specific intensity level 𝑖𝑖𝑖𝑖 ; 𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑)  = average consequence 
associated with a DS. 

Equation 1.1 fully captures the probabilistic nature of a hazard, as reflected by the integration 
carried out over the PDF of the hazard intensity measure. This allows for the proper consideration 
of all hazard intensities relevant to a site of interest. This improvement contrasts to the existing 
methods within TAM where a small number of intensity levels, usually adopted based on 
intensities for design, are considered. Equation 1.1 also incorporates the uncertainty related to the 
structural vulnerability, as represented by the conditional probabilities associated with different 
DSs. These conditional probabilities can be obtained using fragility curves, which provide the 
probabilities of reaching or surpassing a specific damage state given an intensity level1 (Buckle et 
al. 2006; Muntasir Billah & Shahria Alam 2015). Through Equation 1.1, risk can be objectively 
assessed with a hazard characterization model λ𝐼𝐼𝐼𝐼 , fragility curves to derive 𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼 , and the 
expected cost data for each DS 𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑). Risk can be objectively quantified without relying on 
expert elicitation with these models (e.g., using those provided in HAZUS). 

The risk integral in Equation 1.1 has been used to assess risks from (a) a single source of hazards 
(e.g., earthquakes) or (b) hazards with independent (or weakly correlated) physical mechanisms 
(e.g., earthquakes and floods). In the latter case, the risk associated with each hazard can be 
considered separately, and the total risk due to multiple independent hazards is the summation of 
the risk values from different hazards. The assumption of independent hazards has been adopted 
in existing multi-hazard risk assessment approaches in TAM (Western et al. 2016). However, it 
should be noted that this assumption of independent hazards may fail to capture multi-hazard 
effects, e.g., when the genesis of hazards or the vulnerability of structures are correlated or 
interdependent. For instance, the deterioration of bridge substructure may increase structural 

 
 
1 The probabilities of reaching a damage state can then be calculated by subtracting the fragility value of the next 

worse damage state from the fragility value of the damage state under consideration. 

𝑅𝑅 = � ��𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑) ⋅ 𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑖𝑖)
𝑑𝑑𝑑𝑑

� |𝜆𝜆𝐼𝐼𝐼𝐼′ (𝑖𝑖𝑖𝑖)|𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖𝑖𝑖
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vulnerability under seismic events. It is important to capture this interaction for the integration of 
asset management and risk assessment. 

1.3 LIFETIME RISK DUE TO DETERIORATION 

Deterioration risk of a structure can be attributed to the reduced load-carrying capacity due to 
environmental and mechanical stressors (e.g., corrosion and fatigue). Excessive deterioration may 
ultimately lead to structural closure or even unexpected failure. Poor condition is the single most 
significant contributor to bridge decommission in the US, accounting for 41.4% of all cases 
(Bektas & Albughdadi 2020). Deterioration-related bridge failure (including partial to total 
collapse) amounts to 6% to 9% of all bridge failure cases from 1987 to 2011 (Wardhana & 
Hadipriono, 2003; Cook, et al., 2015). Therefore, although asset management deals primarily with 
condition preservation, the goal of asset management can also be reinterpreted as risk reduction 
against deterioration. In this context, deterioration-related service disruption (or structural failure) 
can be treated as a particular hazard, allowing for a straightforward integration of condition 
preservation and risk mitigation. 

In the context of Equation 1.1, the IM and DS associated with this deterioration hazard are 
described as follows. In bridge management systems (or TAM in general), the intensity of 
deterioration is usually measured by condition states or condition ratings such as in the National 
Bridge Inventory (NBI). Herein, the NBI condition ratings are used as intensity measure to 
quantify deterioration risk. In general, the lower the NBI rating is, the more likely the asset is to 
experience service disruption (or even unexpected failure). Note that other descriptors of 
deterioration, such as health index (Inkoom et al. 2017), can also be used in this context as the 
intensity measure of deterioration risk. “Survival” and “failure” under normal traffic conditions 
are considered as two DSs conditioned on different condition ratings. Note that “failure” herein 
refers to any types of severe service disruption that can include planned decommission such as 
bridge closure before the end of service life. Deterioration risk 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 can be derived from Equation 
1.1 as follows: 

 
Equation 1.2 Deterioration risk derived from the risk integral 

where 𝑐𝑐𝑞𝑞𝑓𝑓 = failure consequence (note that only failure DS incurs cost); 𝐶𝐶𝐶𝐶 = condition rating 
used to reflect intensity of deterioration; 𝑝𝑝𝑓𝑓(𝑐𝑐𝑐𝑐) = annual failure rate conditioned on different CR 
used to model structural vulnerability to deterioration. As the condition ratings are discrete values, 
the integral over IM in Equation 1.1 becomes a summation across different condition ratings in 
Equation 1.2. 

For a specific year of interest, Equation 1.2 estimates the annual deterioration risk corresponding 
to the probability distribution of projected CRs in that year. Unlike stationary extreme events such 

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 = � ��𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑)𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑖𝑖)
𝑑𝑑𝑑𝑑
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𝑐𝑐𝑐𝑐
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as earthquakes, the CR probabilities vary over time due to deterioration. This deterioration process 
(manifested by time-variant CR distributions) is usually modeled as a Markov deterioration 
process and is widely used in TAM. By summing up the annual deterioration risks throughout the 
service life, lifetime risk due to deterioration 𝑅𝑅𝐿𝐿,𝑑𝑑𝑑𝑑𝑑𝑑 can be expressed as follows: 

 
Equation 1.3 Lifetime deterioration risk 

where 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) = deterioration risk in year 𝑡𝑡, which is calculated based on the CR distribution in 
year 𝑡𝑡 using Equation 1.2; 𝑟𝑟 = real annual discount rate. Note that the denominator in Equation 1.3 
should be switched to 𝑒𝑒𝑟𝑟𝑟𝑟 if continuous compounding (instead of annual compounding) is used. 
This real discount rate is affected by nominal discount rate and expected inflation rate and may 
theoretically take either positive or negative values. Its value is usually decided by the agency 
based on different planning horizons. Hence, it is out of the scope of this project. In the following 
discussion, the real discount rate is assumed to be zero for simplicity. It should also be noted that 
Equation 1.3 is only valid when the annual failure probabilities are small (as in the case of bridges 
and tunnels) or the autocorrelation between failures in subsequent years is low. If these conditions 
are not met, error correction techniques such as those proposed in Yang et al. (2021) can be carried 
out to improve the estimation of lifetime risk. 

1.4 RISK-BASED TRANSPORTATION ASSET MANAGEMENT 

Equation 1.3 has important implications for risk-based transportation asset management. It has 
been shown in existing studies that the minimization of lifetime deterioration risk can be used as 
a target for planning preservation and maintenance actions (Yang & Frangopol, 2021). The way 
annual risks are added to determine lifetime risk has also been used to determine risks under 
extreme events such as earthquakes (Dong, et al., 2015). Hence, the goal of asset management and 
risk mitigation can be objectively amalgamated as the minimization of total lifetime risk under 
multiple, deterioration-included hazards. This goal can then be combined with other objectives of 
transportation asset management, e.g., stabilizing maintenance expenditure over the decision 
horizon. 

However, different from total risks from independent hazards, deterioration may exacerbate the 
risk of structural failure under extreme events. Specifically, deterioration increases the 
vulnerability of structures under extreme events, i.e., 𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑠𝑠|𝑖𝑖𝑖𝑖) in Equation 1.1. For instance, 
corrosion of steel reinforcement and crack/spalling of concrete cover can compromise the seismic 
resistance of bridge peers (Bhandari 2023). This, in turn, alters the fragility curves associated with 
different DSs, resulting in changes in 𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑖𝑖) during the service life of a structure. 

To reflect this interaction, the total risk 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  considering deterioration and deterioration-
execrated hazards should be expressed as follows: 

𝑅𝑅𝐿𝐿,𝑑𝑑𝑑𝑑𝑑𝑑 = �
𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡)
(1 + 𝑟𝑟)𝑡𝑡

𝑡𝑡
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Equation 1.4 Total risk of two interacting hazards 

where 𝑅𝑅𝑥𝑥𝑥𝑥𝑥𝑥(𝑡𝑡) = extreme event risk in year 𝑡𝑡 considering structural deterioration. Note that the 
deterioration risk 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) itself is identical to that in Equation 1.2 except that the CR distribution 
is now explicitly tied to time in service 𝑡𝑡. The risk due to extreme events 𝑅𝑅𝑥𝑥𝑥𝑥𝑥𝑥(𝑡𝑡) considers the 
impact of deterioration by using additional parameter 𝑐𝑐𝑐𝑐  for fragility curves. These time- or 
condition-dependent fragility curves can yield time- or condition-dependent DS distributions, i.e., 
𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐). 

The total lifetime risk, 𝑅𝑅𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , can be calculated similarly to Equation 1.3 with annual risks 
calculated using Equation 1.4. This total lifetime risk is important to the framework for risk-based 
transportation asset management. For instance, consider a time- or condition-based maintenance 
policy that can improve the CR distribution over the asset service life, i.e., 𝑝𝑝𝐶𝐶𝐶𝐶(𝑐𝑐𝑐𝑐|𝑡𝑡). The benefit 
of that maintenance policy may be quantified by reduced risk that includes both deterioration and 
extreme event risks. Specifically, for a maintenance policy with a cost of 𝐶𝐶𝑚𝑚𝑚𝑚, the benefit-to-cost 
ratio can be calculated as: 

 
Equation 1.5 Benefit-to-cost ratio including total lifetime risks 

where 𝑅𝑅𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑛𝑛𝑛𝑛) and 𝑅𝑅𝐿𝐿,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑚𝑚𝑚𝑚) = the total lifetime risk without (𝑛𝑛𝑛𝑛) and with maintenance 
(𝑚𝑚𝑚𝑚), respectively. If an optimal policy is sought from many candidate actions, the benefit in the 
numerator in Equation 1.5 can be treated as the objective function of a cost-constrained life-cycle 
optimization problem. 

Overall, this concept of total lifetime risk can benefit transportation asset management in the 
following aspects: 

• It allows for better coordination between condition preservation and risk mitigation activities. 
For instance, if a more stringent maintenance policy is put in place for bridge substructure, its 
associated benefit on seismic risk reduction can also be taken into account with Equation 1.5. 
On the other hand, if seismic retrofitting also enhances the load-carrying capacity for heavy 
vehicles, the additional benefit of reducing deterioration risk can be quantified as well. 

• The risk-based approach facilitates more rational decision-making. Risks from both 
deterioration and extreme events are objectively assessed and expressed in monetary units 

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡) = 𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡) + 𝑅𝑅𝑥𝑥𝑥𝑥𝑥𝑥 (𝑡𝑡)  

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡) = �𝑐𝑐𝑞𝑞𝑓𝑓 ⋅ 𝑝𝑝𝑓𝑓(𝑐𝑐𝑐𝑐) ⋅ 𝑝𝑝𝐶𝐶𝐶𝐶(𝑐𝑐𝑐𝑐|𝑡𝑡)
𝑐𝑐𝑐𝑐
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using the risk integral. As a result, it is no longer necessary to subjectively mix performance 
in condition preservation and benefit of risk reduction for a particular maintenance or 
retrofitting policy (as it is currently done in most existing BMSs). 

1.5 SUMMARY 

By treating deterioration as a separate hazard, total lifetime risk from deterioration and extreme 
events is determined to achieve risk-based transportation asset management. While different from 
previous methods for considering risks in TAM, the proposed framework relies on objective risk 
assessment consistent with other frameworks for modeling infrastructure risk and resilience. 

Basic ingredients of the risk-based framework are summarized. To estimate deterioration risk, the 
following data and models are needed: 

• Markov or other deterioration models with respect to asset condition scores such as states, 
ratings, or health index. These models are usually available in existing TAM systems.  

• Costs and probabilities of service disruption corresponding to different condition scores. 
These probabilities can be inferred from past records of emergency repairs or asset closures. 
Alternatively, they can be approximated by structural reliability analysis if only severe 
disruption or structural failures are considered. Future studies are needed to standardize the 
derivation of these data. 

To estimate extreme event risk, necessary data and models include: 

• Hazard characterization curves (i.e., intensity measure vs. annual rate of exceedance). For 
earthquake hazards, these can be found from USGS databases. For hydrometeorological 
hazards, tailored models may be needed to derive these curves, e.g., see HAZUS Flood Model 
(FEMA 2009) for more details. 

• Sets of fragility curves for different damage states (each set corresponds to a condition score). 
Although several existing studies proposed seismic fragility curves for specific deteriorated 
bridges and tunnels, there is a lack of widely-applicable fragility curves for deteriorated assets 
suitable for network-level analysis in TAM. Future studies in these directions are needed. 

• Costs associated with different damage states. These data are often available in existing risk 
assessment frameworks (e.g., HAZUS and IN-CORE) and/or obtainable from damage 
inspection reports and reconnaissance studies. 

Finally, it is worth mentioning that the interaction of hazards (similar to that between deterioration 
and extreme events) may also appear in other settings if one hazard can affect the structural 
vulnerability under the presence of another hazard. An example of this multi-hazard setting is the 
total risk from scour and earthquakes, where the scour damage at the foundation can exacerbate 
structural vulnerability to seismic events. The risk integral of interacting hazards, as determined in 
this chapter, can facilitate future studies in this direction. 
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CHAPTER 2 

OBJECTIVE RISK ASSESSMENT USING WEIGHTED HAZARD SCENARIOS 

2.1 INTRODUCTION 

The framework for risk-based transportation asset management hinges on the objective risk 
assessment under deterioration and extreme events. As described in Chapter 1, the risk of critical 
transportation assets should be objectively expressed as a risk integral (i.e., Equation 1.1), 
considering quantified uncertainties arising from hazard characteristics, structural vulnerability, 
and damage consequences. However, the evaluation of a risk integral differs considerably from 
the estimation of risk in most existing TAM systems, hindering its application in bridge and tunnel 
management. For existing methods compatible with or potentially applicable to bridge 
management systems (BMSs), risks are usually estimated following the general procedure outlined 
below (Western et al. 2016; AASHTO 2021): 

(a) Collect one or a limited number of hazard scenarios relevant to the asset performance. These 
are usually obtained from expert elicitation or past experience. They can be different hazards 
(e.g. earthquakes and floods), one hazard with different return periods (thus different intensity 
levels), or one hazard with a specific return period causing a particular damage extent (in term 
of a DS). 

(b) Estimate the annual rate of each hazard scenario. This can be determined from polls on experts 
or past experience of agencies. Results of probabilistic hazard analysis, e.g., those available 
through USGS for earthquakes, can also be utilized in this step.  

(c) Estimate the expected consequence under each hazard scenario. This can be similarly 
determined from expert polls or past experience. Alternatively, damage evaluation given the 
scenario event can be conducted using HAZUS or in-house tools (FEMA 2023; Western et al. 
2016). Note that this differs from a risk analysis as it assumes that the hazard event will occur 
and calculates the expected cost considering only the uncertainties in structural vulnerability. 

(d) Tabulate the risks associated with all hazard scenarios by multiplying the annual rates and the 
expected consequences. Sum up the risks of hazard scenarios as the total annual risk associated 
with the asset. Tally all annual risks to determine the lifetime risk. 

Table 2.1 presents a generic example of this approach to computing seismic risk (hereafter referred 
to as the BMS approach1). Despite the noticeable differences in formulations, the BMS approach 
can be interpreted as a numerical integration procedure (i.e., using the rectangular rule) for the risk 
integral in Equation 1.1. This is achieved by substituting the integration along the continuous 
intensity measure with a summation over all scenario events, shown as follows: 

 
 
1 Note that this refers to existing methods within the reasonable capability of modern BMS implementations. 



22 

 
Equation 2.1 Risk approximation implied in the BMS approach 

where 𝐶𝐶𝐶𝐶����(𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒) ≡ ∑ 𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑) ⋅ 𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒)𝑑𝑑𝑑𝑑  = expected consequence under a hazard 
scenario with an intensity level equal to 𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒; 𝑣𝑣𝐼𝐼𝐼𝐼(𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒) = annual rate of the hazard scenario, 
which can be approximated by the difference between the annual exceedance rate between one 
hazard scenario and the next more severe hazard scenario. For instance, the rate of a 225-year 
earthquake in Table 2.1 is the difference between 1/225 and 1/975, the annual exceedance rate of 
the next hazard scenario (i.e., a 975-year earthquake).  

Table 2.1 Tabulation approach to risk estimation in common BMSs 
Hazard 
Scenario 

Description Annual rate Intensitya 
(PGA, g) 

Consequenceb 
(cost ratio) 

Risk 
(cost ratio) 

1 225-year earthquake 3.418×10−3 (0.407) 0.326 1.114×10−3 
2 975-year earthquake 6.220×10−4 (0.774) 0.691 4.298×10−4 
3 2475-year earthquake 4.040×10−4 (1.017) 0.819 3.309×10−4 
    Total risk 1.875×10−3 
Notes: 
(a) This column contains intensity measures in terms of PGA (in unit g). The values are in parentheses 

because they are not directly used by BMSs. Instead, they are used to determine the damage state 
probabilities and the expected damage consequence of a hazard scenario. 

(b) Values in this column are expressed as cost ratios, i.e., the ratio of repairing to rebuilding costs. 

Subjectivity of this BMS approach can arise from the subjective selections of hazard scenarios and 
assignments of their annual rates and consequences. This subjectivity can be partially alleviated 
by using probability hazard analysis for step (b) and using structural fragility analysis for step (c), 
as implemented in Table 2.1. However, the selection of hazard scenarios remains a major 
hinderance to objective risk assessment. Additionally, an accurate estimation of an integral with 
the rectangular rule demands a large number of hazard scenarios, which are usually not practical 
in BMS implementations. We demonstrate in the later sections that the tabulation approach based 
on a few subjectively selected hazard scenarios cannot accurately estimate the risk integral. To 
overcome this challenge, a novel tabulation approach based on weighted hazard scenarios is 
described. 

2.2 RISK ASSESSMENT USING WEIGHTED HAZARD SCENARIOS 

A new tabulation method is developed herein by leveraging a more accurate and efficient 
numerical integration method, i.e., the Gaussian quadrature method, in place of the rectangular 
rule implied in the current BMS method. The objectives of this new method are as follows: 

• Reduce the number of hazard scenarios needed to accurately estimate the risk integral; 
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� |𝜆𝜆𝐼𝐼𝐼𝐼′ (𝑖𝑖𝑖𝑖)|𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖𝑖𝑖

  

≈ � 𝐶𝐶𝐶𝐶����(𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒) ⋅ 𝑣𝑣𝐼𝐼𝐼𝐼(𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒)
𝑖𝑖𝑚𝑚𝑒𝑒𝑒𝑒
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• Preserve the general implementation steps for easy integration with existing BMSs. 

The mathematical formulation of the Gaussian quadrature method for numerical integration is 
provided in Appendix A. Figure 2.1 illustrates the concept underpinning the Gaussian quadrature 
method for numerical integration. Figure 2.1(a) shades the region under the multiplication of the 
likelihoods and the consequences for different intensity levels. The risk integral is, therefore, the 
area of the shaded region. Figure 2.1(b) illustrates the use of Equation 2.1 for approximating this 
integral. As shown in Figure 2.1(c), the Gaussian quadrature method strategically selects the 
location (highlighted dots in the figure) and the weights of intensity levels (width of the rectangles 
in the figure) so that the sum of the shaded areas can be better estimated with the same number of 
intensity levels. Applying the Gaussian quadrature method to the risk integral in Equation 1.1 gives 
rise to the following equation: 

 
Equation 2.2 Risk calculation with numerical integration (Gaussian quadrature) 

where 𝑤𝑤𝑖𝑖 = weight of the 𝑖𝑖th scenario event, equal to the integration weight 𝜂𝜂𝑖𝑖 of the 𝑖𝑖th Gaussian 
integration point (see Appendix A for more details). The summation in Equation 2.2 can be treated 
as the total risk from 𝑛𝑛 scenario events, each with a unique intensity level 𝑖𝑖𝑚𝑚𝑖𝑖 and responsibility 
weight 𝑤𝑤𝑖𝑖 to the total risk. Equation 2.2 slightly differs from Equation 2.1 in the following two 
aspects: (a) the introduction of responsibility weights assigned to different scenarios and (b) the 
determination of the annual rate of occurrence for a scenario event. This nominal annual rate of 
occurrence, 𝑝𝑝𝐼𝐼𝐼𝐼(𝑖𝑖𝑚𝑚𝑖𝑖), is calculated as follows: 

 
Equation 2.3 Nominal annual rate of occurrence 

Due to the similarity between Equation 2.1 and Equation 2.2, the numerical integration represented 
by Equation 2.2 can be directly implemented using the same steps described in Section 2.1 and a 
similar table to Table 2.1 after (a) scaling the expected consequences with the responsibility 
weights and (b) replacing the annual rates with 𝑣𝑣𝐼𝐼𝐼𝐼(𝑖𝑖𝑚𝑚𝑖𝑖) for all scenarios. The new method 
represented by Equation 2.2 is referred to herein as the method of risk assessment using weighted 
hazard scenarios. 

𝑅𝑅 = � ��𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑) ⋅ 𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑖𝑖)
𝑑𝑑𝑑𝑑

� |𝜆𝜆𝐼𝐼𝐼𝐼′(𝑖𝑖𝑖𝑖)|𝑑𝑑𝑑𝑑𝑑𝑑
𝑖𝑖𝑖𝑖=𝑏𝑏

𝑖𝑖𝑖𝑖=𝑎𝑎
  

≈� 𝑤𝑤𝑖𝑖�
𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ℎ𝑡𝑡

⋅ ��𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑) ⋅ 𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑚𝑚𝑖𝑖)
𝑑𝑑𝑑𝑑

�
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𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞

⋅ 𝑣𝑣𝐼𝐼𝐼𝐼(𝑖𝑖𝑚𝑚𝑖𝑖)�������
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑛𝑛

𝑖𝑖=1

  

𝑣𝑣𝐼𝐼𝐼𝐼(𝑖𝑖𝑚𝑚𝑖𝑖) =
𝑏𝑏 − 𝑎𝑎

2
|𝜆𝜆𝐼𝐼𝐼𝐼′(𝑖𝑖𝑖𝑖)|  
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Figure 2.1 Concept of Gaussian quadrature for numerical integration: (a) precise risk 

integral, (b) risk estimated by expert elicitation, and (c) weighted hazard scenarios from 
Gaussian quadrature 

In Equation 2.2, the integration domain [𝑎𝑎, 𝑏𝑏] can be regarded as the intensity levels responsible 
for the asset risk under adverse events. For instance, a domain [0.1g, 2.0g] for peak ground 
acceleration (PGA) may be used for estimating asset seismic risk if (a) an asset is extremely 
unlikely to damage with PGA less than 0.1g and (b) an earthquake causing PGA larger than 2.0g 
is extremely unlikely to happen in the region (and a lower PGA already causes catastrophic 
consequences). This domain is responsible for determining the intensity levels 𝑖𝑖𝑚𝑚𝑖𝑖 of different 
hazard scenarios, as specified by the following equation: 

 
Equation 2.4 Scenario weights and intensity levels 

where 𝜉𝜉𝑖𝑖 = integration points given a 𝑛𝑛-point Gaussian quadrature. As discussed in Appendix A, 
once the number of hazard scenarios (i.e., the integration points 𝑛𝑛) are selected, 𝜂𝜂𝑖𝑖  and 𝜉𝜉𝑖𝑖  are 
predetermined and do not depend on the integrand function in Equation 2.2. Nonetheless, the 
number of hazard scenarios itself that can yield accurate estimation does hinge on the integrand 
function. In practice, this number can be raised incrementally until the estimated risk converges. 

𝑣𝑣𝐼𝐼𝐼𝐼(𝑖𝑖𝑚𝑚𝑖𝑖) =
𝑏𝑏 − 𝑎𝑎

2
|𝜆𝜆𝐼𝐼𝐼𝐼′(𝑖𝑖𝑖𝑖)|  
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Through numerical examples in later sections, it will be shown empirically that risk assessment 
using weighted hazard scenarios is accurate with only a small number of scenarios. 

To facilitate the application of this new approach, a Python package named pyRiskTable has been 
developed to automatically generate a comma-separated values (CSV) file containing weighted 
hazard scenarios given a target accuracy level. Figure 2.2 illustrates the basic components of this 
package and their relationships. The package is available as a code repository on GitHub1 at 
https://github.com/cedavidyang/risk-based-BMS.git. We will grant access to the package upon 
request. It is our intention to open-source this package once the review is complete and the package 
is out of its beta stage. 

 
 
1 The U.S. Government does not endorse products or manufacturers. They are included for informational purposes 

only and are not intended to reflect a preference, approval, or endorsement of any one product or entity. 

https://github.com/cedavidyang/risk-based-BMS.git
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Figure 2.2 Flowchart of the developed package (pyRiskTable) 

2.3 WEIGHTED HAZARD SCENARIOS FOR DETERIORATING ASSETS 

During the service life of an asset, deterioration may affect its vulnerability under extreme events. 
For instance, as mentioned in Chapter 1, deterioration can amplify seismic fragility. Therefore, it 
is important to use age- or condition-dependent fragility curves to reflect the effect of deterioration 
(Muntasir Billah & Shahria Alam 2015). This change in fragility curves affects the expected 
consequences determined by Equation 2.2. If the probability distribution of damage states (DSs) 
is linked to time in service, the expected consequence also becomes age-dependent, as represented 
by the following equation:  
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Equation 2.5 Expected consequence based on age-dependent fragility curves 

where 𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑖𝑖, 𝑡𝑡) = probabilities of different DSs after 𝑡𝑡 years in service if a hazard with 
intensity level 𝑖𝑖𝑖𝑖  occurs in year 𝑡𝑡 . These probabilities should be determined based on age-
dependent fragility curves. Alternatively, if the effect of deterioration on extreme event risk is 
reflected by condition-dependent fragility curves, the expected consequence can be formulated by 
rearranging Equation 1.4 as follows: 

 
Equation 2.6 Expected consequence based on condition-dependent fragility curves 

Equation 2.5 and Equation 2.6 indicate that the integrand of the risk integral varies within the asset 
service life due to deterioration. Because of this change, weighted hazard scenarios should be, in 
principle, regenerated every year in the asset service life to ensure that the annual risk can be 
accurately estimated. However, this regeneration can significantly complicate the implementation 
in existing BMSs. 

In the later section, the error of keeping the same set of weighted hazard scenarios (derived from 
the fragility model of a pristine asset without deterioration) will be investigated through a 
numerical example. Specifically, it will be shown that even under extreme deterioration that may 
not be realistically experienced in civil structures, the error introduced by using a fixed set of 
hazard scenarios is not significant. Hence, the method based on weighted hazard scenarios can 
also be used for risk assessment of deteriorating assets under extreme events. 

2.4 ILLUSTRATIVE EXAMPLE 

The approach described in the previous section is illustrated herein by an example focusing on 
bridge seismic risk assessment. The flowchart in Figure 2.2 is used to derive the weighted hazard 
scenarios. The result is compared in terms of accuracy to the existing tabulation approach in BMSs. 
This example is then leveraged to illustrate implications of objective risk assessment on the life-
cycle management of deteriorating assets. 

2.4.1 Hazard Characteristics, Bridge Fragility, and Damage Consequences 

In this example, a fictional hazard curve based on an idealized fault 10 km away from the site is 
considered following Baker (2013). The fault is assumed to only generate magnitude 6.5 
earthquakes with a return period of 100 years. Using probabilistic seismic hazard analysis, the 
following hazard curve can be derived (Cornell et al. 1979; Baker 2013): 

 

𝐶𝐶𝐶𝐶����(𝑖𝑖𝑖𝑖|𝑡𝑡) = �𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑) ⋅ 𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑖𝑖, 𝑡𝑡)
𝑑𝑑𝑑𝑑

  

𝐶𝐶𝐶𝐶����(𝑖𝑖𝑖𝑖|𝑡𝑡) = �𝑝𝑝𝐶𝐶𝐶𝐶(𝑐𝑐𝑐𝑐|𝑡𝑡) ⋅�𝑐𝑐𝑐𝑐(𝑑𝑑𝑑𝑑)
𝑑𝑑𝑑𝑑

𝑝𝑝𝐷𝐷𝐷𝐷|𝐼𝐼𝐼𝐼(𝑑𝑑𝑑𝑑|𝑖𝑖𝑖𝑖, 𝑐𝑐𝑐𝑐)
𝑐𝑐𝑐𝑐

  

𝑙𝑙𝑙𝑙 𝑃𝑃𝑃𝑃𝑃𝑃��������� = −0.152 + 0.859𝑀𝑀 − 1.803 𝑙𝑙𝑙𝑙(𝑑𝑑 + 25) 
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Equation 2.7 Hazard curve 

where 𝑀𝑀 = magnitude of the earthquakes generated at the fault (𝑀𝑀 = 6.5 in this example); 𝑑𝑑 = 
distance between the site and the fault in kilometers (𝑑𝑑 = 10 km in this example); Φ = cumulative 
distribution function (CDF) of a standard normal distribution; 𝜎𝜎 = dispersion factor of the PGA 
(i.e., the standard deviation of the logarithmic PGA) at the site, and 𝜎𝜎 = 0.57 is assumed herein 
(Cornell et al. 1979). This hazard curve gives the annual rate of exceedance 𝑣𝑣𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖)  under 
different PGA levels. Both the hazard curve and its gradient with respect to PGA are shown in 
Figure 2.3. It should be noted that the hazard curve has a maximum annual rate of exceedance of 
0.01 due to the assumed return period of earthquakes at this idealistic fault. 

 
Figure 2.3 Hazard curve and the absolute value of its gradient 

Fragility curves in Basöz and Mander (1999) are used to determine the DS probabilities given an 
intensity level at the site. For each DS, the fragility curve is modeled by the CDF of a two-
parameter lognormal distribution, median PGA and the dispersion factor (i.e., the standard 
deviation of ln𝑃𝑃𝑃𝑃𝑃𝑃). Table 2.2 gives the two parameters used for each DS. The DS probability 
can be determined by comparing the fragility curves between two consecutive DSs, as illustrated 
in Figure 2.4. 

 

Table 2.2 Fragility curve classification 
Damage state Median PGA (in g) Dispersion (𝝈𝝈𝐥𝐥𝐥𝐥𝑷𝑷𝑷𝑷𝑷𝑷) 
Slight 0.30 0.6 
Moderate 0.36 0.6 
Extensive 0.49 0.6 
Complete 0.71 0.6 

𝜆𝜆𝐼𝐼𝐼𝐼(𝑖𝑖𝑖𝑖) = 1 −𝛷𝛷 �
𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖 − 𝑙𝑙𝑙𝑙 𝑃𝑃𝑃𝑃𝑃𝑃���������

𝜎𝜎
�  
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Figure 2.4 Fragility curves and damage state probabilities 

It is worth mentioning that the fragility curves in Figure 2.4 use PGA as the intensity measure, 
which allows us to directly connect the fragility curve with the results from probabilistic seismic 
hazard analysis. Although the curves presented herein were used to derive the HAZUS fragility 
models, HAZUS has since switched to spectral acceleration (SA) as the intensity measure. The 
conversion from PGA to SA can be found in Basöz and Mander (1999). For the convenience of 
the analysis herein, this conversion is not implemented.  

Lastly, damage state consequences are described in terms of cost ratios, calculated as the ratio of 
damage cost to replacement cost. Table 2.3 presents these cost ratios based on the data from past 
field studies and summarized in Basöz and Mander (1999).  

Table 2.3 Average cost ratios for different damage states 
Slight Moderate Extensive Complete 
0.12 0.19 0.48 1 

2.4.2 Seismic Risk Assessment with Weighted Hazard Scenarios 

The Python-based tool described in Section 2.3 is used to generate weighted hazard scenarios, 
based on which the seismic risk of the bridge can be computed with the tabulated sum. Following 
the flowchart in Figure 2.2, a threshold of 0.05 is used to determine the appropriate number of 
weighted hazard scenarios, namely, the hazard number keeps increasing until the risks estimated 
between two consecutive iterations are less than 5% apart. To avoid premature stopping of this 
iterative process, at least four scenarios are needed for the risk estimation. Additionally, the 
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integral domain is selected based on the lower and upper limits of intensity levels that correspond 
to two return periods, namely 100 years1 and 100,000 years. 

Based on these parameters, six hazard scenarios are obtained. Table 2.4 presents the intensity 
measures, event rates (nominal), scenario weights, and damage consequences for all six scenarios. 
Also included in the table are the return periods for all events backcalculated from the intensity 
levels. It should be noted that these return periods are not needed in the new approach. They are 
presented herein to showcase the consistent format of the new approach compared to the BMS 
method currently in use. By tabulating the weighted risks of these scenarios (calculated as the 
product of the rate, consequence, and weight), the total seismic risk is 0.00340 (in terms of cost 
ratio). This is very close (within 2% margin) to the precise value of the risk integral (0.00332) 
evaluated based on Equation 1.4 with numerical integration. 

Table 2.4 Weighted hazard scenarios and risks 
Hazard 
scenario 

Description 
(return period, PGA in g) 

Annual 
rate 

Consequence 
(cost ratio) 

Weight Risk 
(cost ratio) 

1 104 yr, PGA=0.136 1.119E-02 0.021 0.171 4.078E-05 
2 240 yr, PGA=0.424 1.712E-02 0.348 0.361 2.148E-03 
3 1435 yr, PGA=0.873 2.855E-03 0.752 0.468 1.004E-03 
4 8873 yr, PGA=1.379 3.991E-04 0.916 0.468 1.711E-04 
5 36247 yr, PGA=1.828 8.597E-05 0.966 0.361 2.995E-05 
6 82265 yr, PGA=2.116 3.502E-05 0.980 0.171 5.879E-06     

Total risk 0.00340 

To demonstrate advantages over the existing approach, six typical hazard scenarios are utilized to 
estimate the risk with the BMS/NCHRP approach. The return periods of these scenarios are 
selected because they are commonly used in either expert-based seismic risk assessment or seismic 
analysis and design of structures. Table 2.5 presents the return periods, corresponding event rates, 
implied intensity levels, and damage consequences of all scenarios. The risks associated with the 
scenarios and the total risk are also presented in Table 2.5. It can be observed that the total risk 
obtained from the BMS approach underestimates the precise risk by 36% (0.002117 vs. 0.00332). 

Table 2.5 Risk assessment based on BMS procedures 
Hazard 
scenario 

Description 
(return period, PGA in g) 

Annual 
rate 

Consequence 
(cost ratio) 

Risk 
(cost ratio) 

1 225 yr, PGA=0.326 2.444E-03 0.326 7.958E-04 
2 500 yr, PGA=0.554 9.740E-04 0.554 5.397E-04 
3 975 yr, PGA=0.691 3.590E-04 0.691 2.480E-04 
4 1500 yr, PGA=0.758 1.670E-04 0.758 1.266E-04 
5 2000 yr, PGA=0.795 9.600E-05 0.795 7.633E-05 
6 2475 yr, PGA=0.819 4.040E-04 0.819 3.309E-04    

Total risk 0.002117 

 
 
1 For implementation, 100.01 years is used as the lower limit to avoid numerical issues that arise when 100 years is 

plugged into the hazard curve to derive the corresponding intensity level. 
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Based on the similar format between Table 2.4 and Table 2.5 , it is clear that the new approach can 
be directly integrated into existing BMSs without significantly altering the current workflow of 
transportation asset management. Specifically, an analyst only needs to combine the scenario 
weights with the scenario consequences and feed the scaled consequences to BMSs together with 
the event rates to achieve objective risk assessment. 

2.4.3 Seismic Risk of Deteriorating Bridges 

Since the hazard curve in Figure 2.3 describes the annual rate of exceedance, the risk value 
previously computed represents the annual seismic risk of the bridge. With deterioration, the 
seismic fragility curves may change over time. Herein, an age-dependent model for fragility curves 
is assumed to investigate the accuracy of the estimated risk using the same set of weighted hazard 
scenarios in Table 2.4 through the bridge service life1. Specifically, the median PGA value of a 
fragility curve (related to the seismic resistance of a bridge) is assumed to decrease over time in 
the following fashion: 

 

Equation 2.8 Time-dependent seismic performance considering deterioration 

where 𝑃𝑃𝑃𝑃𝐴𝐴𝑚𝑚
(𝑑𝑑𝑑𝑑)(0) and 𝑃𝑃𝑃𝑃𝐴𝐴𝑚𝑚

(𝑑𝑑𝑑𝑑)(𝑡𝑡) = median PGAs, associated with damage state 𝑑𝑑𝑑𝑑, at the start 
of the service life (pristine state) and after 𝑡𝑡 years in service, respectively; 𝑎𝑎 = annual deterioration 
rate. Herein, a linear relationship with respect to time is used for simplicity. It is assumed herein 
that 𝑎𝑎 = 0.01. Since the median PGA is approximately the square root of the seismic resistance 
(Basöz & Mander 1999), the assumed deterioration rate implies that by the end of a 75-year service 
life, the median PGA reduces to 25% of its initial value, corresponding to a 93.75% (= 1 − 25%2) 
decrease in seismic resistance. This is, thus, a conservative estimation of the deterioration extent. 
If the error in risk does not increase significantly under this extreme deterioration condition, it can 
be safely concluded that the error is negligible under more realistic deterioration conditions. 

To verify the applicability to deteriorating assets, the risk integral associated with a bridge that 
deteriorates following Equation 2.8 is evaluated for each year in service with two methods. For 
the first method, the same hazard scenarios as those in Table 2.4 are adopted. In particular, annual 
rates and weights are directly obtained from Table 2.4 for all years in service. The effect of 
deterioration is reflected by the age-dependent expected consequences calculated with Equation 
2.5 and Equation 2.8. For the second method, the precise risk value in each year is directly 
computed using Equation 1.1 and numerical integration. Figure 2.5 shows the seismic risk profile 
in the 75-year service life using both methods. The difference between the two profiles represents 
the error in risk assessment when using the same set of weighted hazard scenarios derived from 

 
 
1 Note that the expected consequences may change over time and will be updated using age-dependent fragility 

curves. However, the number of hazards and the hazard intensity levels are not changed throughout the service 
life.  

𝑟𝑟(𝑑𝑑𝑑𝑑)(𝑡𝑡) =
𝑃𝑃𝑃𝑃𝐴𝐴𝑚𝑚

(𝑑𝑑𝑑𝑑)(𝑡𝑡)
𝑃𝑃𝑃𝑃𝐴𝐴𝑚𝑚

(𝑑𝑑𝑑𝑑)(0)
= 1 − 𝑎𝑎𝑡𝑡 
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the pristine bridge. The relative error is also plotted in Figure 2.5. It can be observed that using the 
same set of weighted hazard scenarios does not substantially compromise the accuracy of risk 
estimation. In fact, even at the end of the service life, when deterioration is extremely severe, the 
relative error is still below 5%. As discussed previously, the results indicate that the initial 
weighted hazard scenarios are effective in assessing extreme event risk of deteriorating assets 
throughout their service life. 

  
Figure 2.5 Error of using the same set of hazard scenarios for deteriorating assets 

2.4.4 Implications of Objective Risk Assessment on Asset Management  

One of the primary goals of risk assessment is to carry out risk-based transportation asset 
management. For instance, different maintenance or retrofitting strategies can be compared based 
on their benefit-to-cost ratios (BCRs) from Equation 1.5, where the benefit is the reduction in risk 
attributed to maintenance or retrofitting actions. Therefore, objective and accurate risk assessment 
has direct implications on BCR calculation. To illustrate the implications of this method to TAM, 
the following two fictional maintenance strategies are considered: 

• Strategy 1: Maintain the bridge every two years to immediately rectify any deterioration 
accumulated in the two-year interval and restore the structure to its initial performance. 
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• Strategy 2: Only provide one major maintenance in year 40 within the 75-year service life to 
fix the deterioration accumulated in the first 40 years and restore the structure to its initial 
performance. 

The cost of a maintenance action is assumed to be proportional to the extent of performance 
improvement when the action is taken. Similar to Equation 2.8, the structural performance is 
expressed as the median PGA (a parameter of a fragility curve related to the seismic capacity) 
normalized by the initial median PGA (when no deterioration is present). The cost ratio associated 
with a maintenance action is assumed equal to 1 − 𝑟𝑟  where 𝑟𝑟  is the structural performance 
considering deterioration according to Equation 2.8. 

Based on this cost model, the BCRs of both strategies are evaluated using Equation 1.5. The 
example herein is focused on the additional benefit of maintenance actions in reducing extreme 
event risks. Therefore, only the lifetime seismic risk (expressed in the last equation in Equation 
1.4) is considered to calculate the benefit of a strategy. Additional benefit in reducing deterioration 
risk is neglected. Following this consideration, the benefit of a strategy is the lifetime seismic risk 
given the maintenance strategy subtracted from the lifetime seismic risk without maintenance. 
Annual seismic risks are estimated using Table 2.4 and Table 2.5 for the weighted hazard scenarios 
method and the BMS/NCHRP approach, respectively. To focus on the implications of risk 
assessment approaches, the same age-dependent fragility curves expressed in Equation 2.8 are 
used in both approaches to calculate the age-dependent expected consequences. 

Figure 2.6 shows the results of BCR comparison. It can be observed that when the approach for 
objective risk assessment is used, Strategy 2 is clearly more advantageous than Strategy 1, with an 
approximately 8% higher BCR. On the other hand, when the BMS approach is used, the difference 
between the two strategies is negligible, which can complicate the decision-making process. 
Additionally, the BCR is significantly underestimated when using the existing BMS approach. 
Hence, inaccurate risk assessment with the existing BMS approach may lead to erroneous ranking 
of different maintenance or retrofitting strategies. The objective risk assessment provides a viable 
rectification for this drawback. 
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Figure 2.6 BCR comparison of different risk assessment approaches1 

2.5 SUMMARY 

The risk assessment approach based on weighted hazard scenarios is a novel method to potentially 
fill the gap between risk assessment and asset management. Rather than rely on expert elicitation 
for hazard scenarios, the new approach for objective risk assessment can automatically and 
consistently generate weighted hazard scenarios to be included in the risk analysis. The new 
approach is built on the rigorous formulation of risk integrals and is applicable to both individual 
hazards and interacting hazards such as those coupled with structural deterioration. The 
preservation of a tabulated implementation allows for the direct integration of objective risk 
assessment in common asset management frameworks, laying the foundation for risk-based 
transportation asset management. It is most convenient to apply the new approach as a pre-
processing step when setting up the risk assessment task within common BMSs. Full integration 
with BMSs (as a built-in feature) is possible, but may need additional coordination and 
collaboration with software vendors. 

In summary, the following conclusions can be drawn: 

• Compared to existing risk assessment methods in BMSs, the new approach can yield much 
higher accuracy with the same number of hazard scenarios. The format of the generated 
scenarios is similar to that used in BMSs except for a weighting factor that can be merged to 
event consequences. As a result, the generated hazards can be directly leveraged by existing 
BMSs to achieve object risk assessment. 

• The new approach can handle the interaction between structural deterioration and extreme 
event risk. It is shown empirically that the same set of weighted hazard scenarios generated for 
a pristine structure (specifically, the event rates and the responsibility weights) can be used 
over the entire service life of a structure without introducing notable errors in risk assessment. 
Nonetheless, the deterioration effect should be reflected by the time-variant expected 
consequences given hazard occurrences in different points-in-time of the service life. 

 
 
1 It should be noted that both strategies have a low BCR. This is due to (a) the neglect of benefit in reducing 

deterioration risks, (b) the narrow consideration of economic consequences to bridge owners, and (c) the relatively 
low recurrence rate and magnitude of earthquakes along the assumed fault. 
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• It is also empirically demonstrated that existing approaches to risk assessment compatible with 
BMS implementation do not always deliver reliable rankings of maintenance strategies in 
terms of risk-based benefit-to-cost ratios. This means that the lifetime risk of deteriorating 
assets cannot be assessed by simply incorporating age- or condition-dependent fragility curves 
to BMSs. Instead, the new approach to picking hazard scenarios is a necessary step toward 
risk-based transportation asset management. 
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CHAPTER 3 

MOBILITY RISK ASSESSMENT FOR LARGE-SCALE TRANSPORTATION 
NETWORKS  

3.1 INTRODUCTION 

The previous chapter presents an effective and practical approach to objectively assessing asset 
risks under extreme events, especially when they are also coupled with asset deterioration. The 
consequence indicators used therein (e.g., cost ratios) indicate that the risk evaluated is primarily 
direct economic risk to asset owners. One convenient property about agency risk is that the risks 
from individual assets can be directly added to determine the total risk of a portfolio of 
transportation assets (Western et al. 2016). This type of risk is termed herein as “additive risk”. 

Apart from direct economic risks, transportation systems also carry important societal functions 
prior to, during, and after extreme events, including accessibility to critical public services, 
capacity for vacation and emergency response, and travel cost of road users, among others. These 
indirect consequences of asset failure may demonstrate the so-called “network effect”: this is 
where the combined impact of multiple assets failing at once is greater than the total impact of 
each asset failing individually. This network effect arises primarily due to the interdependency of 
assets in an interconnected network such as transportation systems (Yang & Frangopol 2018; Yang 
& Frangopol 2020). These indirect risks are referred herein as the network risk. 

For indirect consequences, several performance indicators can be applied, including network 
connectivity, travel cost, and network capacity (Chang et al. 2012). Connectivity is efficient to 
compute and especially useful to risk assessment related to life safety when isolated communities 
without accessibility post-hazard should be minimized through mitigation measures or quickly 
identified immediately after hazard occurrence. However, connectivity does not cover the full 
range of transportation performance, especially that related to the mobility of people and goods. 
For instance, although the connectivity is still available, if the traffic flow capacity is drastically 
reduced, both emergency response and post-hazard recovery can be negatively impacted. 

Travel costs, e.g., total travel time and total travel distance (Ghosn et al. 2016), consider both the 
capacity of a transportation network and the demand of road users within the network. It provides 
a complete view of the transportation performance before, during, and after a hazard. However, 
the computation of travel costs involves solving a traffic assignment problem (Patriksson 2015), 
which can be computationally expensive for a large-scale network (e.g., at the state level). This 
computational challenge is further compounded by the need for repeated travel cost evaluations 
during risk assessment. Additionally, traffic demand can be difficult to estimate far into the future 
or immediately after a major hazard, making travel cost a less viable performance indictor for life-
cycle planning or risk assessment under extreme events. 

In this project, we focus on the network capacity as the performance indicator for indirect risk 
assessment. Network capacity measures the total traffic flow that can be maximally accommodated 
between all or important origin-destination (OD) pairs in a transportation network (Morlok & 
Chang 2004). It is an intrinsic characteristic of a network that is independent of traffic demand but 
is sensitive to the capacity of each link and how these links are connected in a network. Therefore, 
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network capacity is considered a “middle ground” between connectivity and travel cost (Chang et 
al. 2012). On the one hand, the network capacity automatically reflects connectivity issues, which 
can be manifested as a zero capacity between an OD pair. On the other hand, network capacity 
bypasses the need for demand estimation, thereby avoiding the shortcomings of travel cost 
evaluation. However, it can still implicate mobility issues that are usually at least partially 
attributed to insufficient road capacities. Additionally, network capacity can be computed very 
efficiently even for large-scale transportation systems.  

Based on network capacity, the network risk 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 of a transportation system can be expressed as 
(Yang & Frangopol 2020; Yang 2022): 

 
Equation 3.1 Expression of network risk 

where 𝑝𝑝(𝐬𝐬) = probability of the system state 𝐬𝐬; 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁(𝐬𝐬) = system-level consequences given the 
system state 𝐬𝐬; 𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁,0 = system-level consequences without any damage, respectively. It should 
be noted that the probability  𝑝𝑝(𝐬𝐬) can represent system damage under both an extreme event 
and/or deterioration. For the latter, the damage to the system can be calculated as the deterioration-
induced service disruption of one or multiple assets within a specific year in the service life1. On 
the consequences side, different from direct economic risk, capacity-based network risk does 
exhibit the network effects. Therefore, the evaluation of system-level consequences in Equation 
3.1 calls for the complete knowledge of all asset conditions. To calculate the network capacity, 
Appendix B provides detailed information on how transportation systems can be modeled as 
graphs and how the network capacity can be evaluated rigorously using this graph model. 

For a large-scale transportation system with hundreds to thousands of assets, assessing the network 
risk is extremely complicated due to the enormous amount of unique system states. For instance, 
if we consider two states for each asset (e.g., complete damage and survival), a system made up of 
100 assets gives rise to 2100 − 1 ≈ 1030 unique system states with failure consequences. This 
number renders precise evaluation using Equation 3.1 impractical. Since the state of each asset can 
be regarded as a random variable influencing the network risk, the challenge of risk assessment 
for a large-scale system is also referred to as the challenge of risk assessment in high dimensions 
(or in high-dimensional space). In this chapter, a more effective and efficient algorithm based on 
Transitional Markov chain Monte Carlo (TMCMC) is selected to overcome this computational 
challenge related to network risk assessment. 

3.2 EFFICIENT ALGORITHM FOR LARGE-SCALE NETWORK RISK 
ASSESSMENT 

Due to the challenge mentioned above, previous approaches to network risk assessment have 
primarily dealt with small- to moderate-scale systems with dozens of assets (Saydam et al. 2013; 

 
 
1 The risk within multiple years can then be approximated by the sum of annual risks. 

𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 = �𝑝𝑝(𝒔𝒔) ⋅ �𝐶𝐶𝑁𝑁𝑁𝑁𝑁𝑁(𝒔𝒔) − 𝐶𝐶𝑁𝑁𝑁𝑁𝑇𝑇,0�
𝒔𝒔

 



38 

Bocchini & Frangopol 2011; Yang & Frangopol 2020; Yang & Frangopol 2019; Yang & 
Frangopol 2018; Bensi et al. 2015). At those scales, network risk can be analytically bounded using 
a subset of all system states, e.g., by considering the system states with up to a specific number of 
damaged assets (Yang & Frangopol 2019). However, for large-scale systems, risk can no longer 
be effectively bounded in this manner. 

Often, Monte Carlo (MC) simulation, which randomly samples system states and evaluates the 
corresponding consequences, becomes the last resort (Rokneddin et al. 2014; Vishnu et al. 2023). 
However, conventional MC simulation tends to concentrate the sampling effort on the system 
states with high likelihood of occurrence. Due to the large number of system states, it becomes 
challenging to sample system states that have low likelihood of occurrence but high consequences, 
i.e., the so-called “grey swan” events1. As a result, MC simulation may perform poorly for network 
risk assessment when/if the risk is heavily influenced by “grey swan” events.  

To overcome the shortcomings of existing methods, a novel sampling method based on TMCMC 
is developed and described in detail in this section. Specifically, the risk determined by Equation 
3.1 is first formulated as an integral with respect to a multivariate normal distribution. Using this 
new formulation, the TMCMC algorithm is established in the context of network risk assessment. 

3.2.1 Formulating Network Risk with Multivariate Normal Distribution 

In this project, we focus on the special yet meaningful case of binary states for assets, namely, 
each asset has two states: a survival state that preserves its capacity and a failure state that reduces 
its capacity (e.g., due to detour or lane closure). To formulate TMCMC, the following 
transformation function 𝜏𝜏:ℝ → {0,1} is utilized: 

 
Equation 3.2 Transformation function for binary asset 

where 𝛽𝛽 = reliability index associated with the failure probability 𝑝𝑝 such that 𝑝𝑝 ≡ Pr[𝑠𝑠 = 1] =
Φ(−𝛽𝛽), and Φ = CDF of a standard normal distribution; 𝜃𝜃 = a hidden standard normal random 
variable that can sample asset states using Equation 3.2. For 𝑛𝑛-dimensional space (a system with 
𝑛𝑛 binary assets), we can similarly leverage the transformation function 𝑇𝑇:ℝ𝑛𝑛 → {0,1}𝑛𝑛  

 
Equation 3.3 Transformation function for 𝒏𝒏 binary assets 

It is thus evident that the union of all 𝛉𝛉 ∈ ℝ𝑛𝑛, after transformation by 𝑻𝑻(𝛉𝛉), corresponds to all 
system events 𝒮𝒮 involving 𝑛𝑛 binary assets (i.e., 𝒮𝒮 = {0,1}𝑛𝑛). In other word, for any system state 

 
 
1 Idiomatically, “black swan” events refer to events so rare that their occurrence cannot be anticipated. In contrast, 

the probability of occurrence for “grey swan” events, although very low, can still be estimated. 

𝜏𝜏(𝜃𝜃) = �1 𝑖𝑖𝑖𝑖 𝜃𝜃 < −𝛽𝛽
0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

𝑇𝑇(𝜽𝜽) = {𝜏𝜏(𝜃𝜃𝑖𝑖)}        𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝜽𝜽 = {𝜃𝜃𝑖𝑖} 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 1,2, … ,𝑛𝑛 
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𝐬𝐬𝑘𝑘 ∈ 𝒮𝒮, we can find a domain Θ𝑘𝑘 ⊂ ℝ𝑛𝑛 such that all θ ∈ Θ𝑘𝑘 transform to 𝐬𝐬𝑘𝑘. Now if 𝛉𝛉 follows an 
independent multivariate normal distribution (with PDF represented by 𝑓𝑓Θ), the risk associated 
with the system state 𝐬𝐬𝑘𝑘 can be expressed as: 

 
Equation 3.4 Risk formulation given a specific system state 𝐬𝐬𝒌𝒌 

where 𝑝𝑝(𝐬𝐬𝑘𝑘) and 𝐶𝐶(𝐬𝐬𝑘𝑘) = probability of 𝐬𝐬𝑘𝑘 and network-level consequence given 𝒔𝒔𝑘𝑘, respectively; 
As a result, by considering all system states, the network risk can be expressed in terms of 𝛉𝛉 as 

 
Equation 3.5 Network risk formulation using multivariate normal distribution 

Note that the derivation above assumes independent asset states for convenience. However, 
Equation 3.5 can be extended to correlated asset failures with Nataf transformation (Melchers & 
Beck 2018). 

3.2.2 Estimating Network Risk with Transitional Markov Chain Monte Carlo (TMCMC) 

The network risk formulated in Equation 3.5 has the same form as the “evidence” term in Bayes’ 
theorem. Fundamentals of Bayes’ theorem and terminologies relevant to the discussion of 
TMCMC algorithm are provided in Appendix C. This similarity inspires the adaptation of 
sampling methods for Bayesian updating to the context of network risk assessment. Specifically, 
the TMCMC algorithm stands out as it can efficiently estimate the “evidence” term in high 
dimensional space or with ill-posed posterior distributions (Ching & Chen 2007). 

Figure 3.1 presents the flowchart of using the TMCMC-based method for network risk assessment. 
Conceptually, the TMCMC algorithm is effective for risk assessment because the samples 
generated in the process gradually transition from system states with high likelihood of occurrence 
(i.e., higher values of 𝑓𝑓𝛩𝛩(𝛉𝛉)) to systems states with high risks (i.e., states corresponding to larger 
products between the occurrence probabilities 𝑓𝑓𝛩𝛩(𝛉𝛉)  and the corresponding consequences 
𝐶𝐶[𝑇𝑇(𝛉𝛉)]). Therefore, TMCMC provides a principled way to find system states critical to the 
network risk, allowing an accurate risk assessment with far less samples than crude MC simulation. 
Specifically, considering a total of 𝑚𝑚 + 1 stages, the samples in stage 𝑗𝑗 are drawn using MCMC 
from the following intermediate PDF: 

 
 

Equation 3.6 Shape of intermediate PDF to generate samples from 

𝐶𝐶(𝒔𝒔𝑘𝑘)𝑝𝑝(𝒔𝒔𝑘𝑘) = 𝐶𝐶(𝒔𝒔𝑘𝑘) ⋅ � 𝑓𝑓𝛩𝛩(𝜽𝜽)𝑑𝑑𝜽𝜽
𝛩𝛩𝑘𝑘

= � 𝐶𝐶[𝑇𝑇(𝜽𝜽)]𝑓𝑓𝛩𝛩(𝜽𝜽)𝑑𝑑𝜽𝜽
𝛩𝛩𝑘𝑘

 

� 𝐶𝐶(𝒔𝒔𝑘𝑘)𝑝𝑝(𝒔𝒔𝑘𝑘)
𝒔𝒔𝑘𝑘∈𝒮𝒮

= �𝐶𝐶[𝑇𝑇(𝜽𝜽)]𝑓𝑓𝛩𝛩(𝜽𝜽)𝑑𝑑𝜽𝜽
𝛩𝛩

 

𝑓𝑓𝑗𝑗 (𝜽𝜽) ∝ {𝐶𝐶[𝑇𝑇(𝜽𝜽)]}𝑝𝑝𝑗𝑗 𝑓𝑓𝛩𝛩(𝜽𝜽)  
𝑗𝑗 = 0, … ,𝑚𝑚    𝑎𝑎𝑎𝑎𝑎𝑎    0 = 𝑝𝑝0 < 𝑝𝑝1 < ⋯ < 𝑝𝑝𝑚𝑚−1 < 𝑝𝑝𝑚𝑚 = 1  
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As can be seen, initially with 𝑝𝑝0 = 0, this is equivalent to sampling from the prior distribution 
𝑓𝑓𝛩𝛩(𝛉𝛉). As the tempering process continues, more and more samples with higher values of risk, i.e., 
𝐶𝐶[𝑇𝑇(𝛉𝛉)]𝑓𝑓𝛩𝛩(𝛉𝛉), are generated. New samples are generated in two subsequent stages (e.g., from 
stage 𝑗𝑗 to 𝑗𝑗 + 1) with the following two steps: 

• Resample from the samples in the current stage following weights equal to 𝐶𝐶[𝑇𝑇(𝛉𝛉)]𝑝𝑝𝑗𝑗+1−𝑝𝑝𝑗𝑗  
• Use the selected samples as the heads of different Markov chains and generate samples in the 

new stage using MCMC. 

 
Figure 3.1 Flowchart of the TMCMC method 

The samples in all stages can be utilized to estimate the “evidence”, i.e., the network risk in this 
context, based on the following equation (Ching & Chen 2007): 

 

 
Equation 3.7 Network risk estimated with the TMCMC method 

where in each stage 𝑗𝑗, 𝛉𝛉𝑘𝑘
(𝑗𝑗) = 𝑘𝑘th sample among all 𝑁𝑁𝑗𝑗 samples. It should be noted that the samples 

of system states in the last stage of the aforementioned process may indicate different failure 
probabilities of assets compared to those associated with the reliability indices of assets. Based on 

𝑅𝑅�𝑛𝑛𝑛𝑛𝑛𝑛 = �
∑ 𝑤𝑤�𝜽𝜽𝑘𝑘

(𝑗𝑗 )�𝑁𝑁𝑗𝑗
𝑘𝑘=1

𝑁𝑁𝑗𝑗

𝑚𝑚−1

𝑗𝑗=0

  

𝑤𝑤 �𝜽𝜽𝑘𝑘
(𝑗𝑗 )� = 𝐶𝐶 �𝑇𝑇 �𝜽𝜽𝑘𝑘

(𝑗𝑗 )��
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the formulation in Equation 3.5, these updated “failure probabilities” reflect the asset contribution 
to the network-level failure consequences, 𝐶𝐶[𝑇𝑇(𝜽𝜽)]. Therefore, besides estimating network risk, 
the samples in the last stage can be utilized to rank the contribution of different assets to the 
network risk, which can be insightful for risk-based asset ranking.  

There are more details related to the implementation of TMCMC, e.g., the selection of proposal 
function in the MCMC step and the determination of tempering parameter in each stage 𝑝𝑝𝑗𝑗. These 
can be found in the original studies by Ching & Chen (2007) and followed up by Betz et al. (2016). 
In this project, the TMCMC algorithm described above is implemented based on the preliminary 
implementation in UQpy, a general-purpose Python toolbox for uncertainty quantification (Olivier 
et al. 2020). The original code in UQpy was improved and modified to enable parallel computing 
so that resources of high-performance computing can be fully capitalized. 

3.3 ALGORITHM VERFICATION VIA NUMERICAL EXAMPLES 

In this section, the effectiveness and efficiency of the TMCMC algorithm for network risk 
assessment are investigated based on a series of analytical examples. In practice, transportation 
networks often involve large quantities of assets, and it is difficult to anticipate whether “grey 
swan” events play a predominant role in the network risk. Therefore, the investigation is focused 
on the following two challenging cases for method verification: (a) high dimensional cases, i.e., 
systems with a large number of vulnerable assets (Case I); (b) risk assessment involving network 
effects and “grey swan” events (Case II). In both cases, the parameters in Table 3.1 are used as the 
parameters of TMCMC. The analytical examples are so designed that the precise network risk can 
be determined analytically and serves as the benchmark for verification.  

Table 3.1 TMCMC parameters 
Parameter Value 
Prior standard deviation 1.0 
Resampling rate 10% 
Number of samples per stage 5000 
COV limit for stage progression 0.2 
Number of chains during MCMC 10 
Number of burn-in samples during MCMC 1000 
Number of samples to skip during MCMC 10 
Proposal standard deviation during MCMC 0.5 

To demonstrate the advantage of the TMCMC algorithm over existing approaches, three methods 
for network risk assessment are compared, including: 

• The TMCMC method: as described in Section 3.2; 
• Crude MC method: system states are sampled based on 𝑓𝑓𝛩𝛩(𝛉𝛉), and the average consequence 

associated with all sample states is the network risk; 
• Risk-bound method: as described and implemented in Yang and Frangopol (2020). 

To ensure fair comparison, the following ground rules are set up: 
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• The TMCMC method is implemented first for all examples; the number of consequence 
evaluations1 and the total number of unique system states among all samples2 are recorded; 

• Crude MC simulation is carried out until the same number of consequence evaluations as that 
from the TMCMC implementation is reached; 

• Risk-bound method is applied considering the same number of unique system states as that 
generated during the TMCMC implementation. 

3.3.1 Case I: Effectiveness with Increasing Asset Numbers 

For Case I, the analytical examples are designed using the following assumptions: 

• Consider systems with increasing numbers of assets (5, 10, 30, and 50). For each system, the 
reliability index of an asset is randomly generated following a uniform distribution between 0 
and 3. The assets are sorted from low to high reliability based on the reliability indices. 

• The failure consequence of an asset (i.e., asset-level consequence) is assumed to be its rank in 
the sorted list of assets. For instance, the asset with the lowest reliability index (rank 1 in the 
sorted list) has a failure consequence of 1; the one with the highest has 𝑛𝑛𝑠𝑠 (where 𝑛𝑛𝑠𝑠 = number 
of assets). 

• When multiple assets fail in the system, the consequence is the summation of asset-level 
consequences, i.e., the network effect is not present. Based on this simplification, the precise 
network risk used as the benchmark can be determined as follows: 

 
Equation 3.8 Precise risk in Case I experiments 

where 𝑝𝑝𝑓𝑓,𝑖𝑖  and 𝐶𝐶𝑖𝑖  = failure probability and asset-level consequence associated with asset 𝑖𝑖, 
respectively. 

Following the ground rules outlined previously, Table 3.2 shows the results of risk estimation 
using different methods. The risk-bound method is accurate and efficient only when the system 
has a small number of assets (e.g., 5 and 10 assets in this example). In these cases, the risk-bound 
method considers all or most of the system states that can occur, resulting in accurate risk 
estimation. As the number of assets increases (e.g., starting with 30 assets), the risk-bound method 
significantly underestimates the network risk. By contrast, both TMCMC and MC can accurately 
estimate the network risk, though TMCMC yields results with more variability. 

 
 
1 In the analytical examples, the computation of consequences is fast and trivial. However, in practice, consequence 

evaluation refers to the computation of maximum flow capacity given the failure/survival states of all assets. This 
is usually the most computationally expensive step. A bookkeeping database is usually maintained so if the system 
states are the same, the maximum flow capacity is retrieved from the database instead of being computed again. 

2 The samples used to count unique system states include (a) samples generated in each stage of the transition 
process and (b) the discarded samples in the burn-in and skip phases of MCMC. 

𝜌𝜌𝐼𝐼 = �𝑝𝑝𝑓𝑓 ,𝑖𝑖 ⋅ 𝐶𝐶𝑖𝑖

𝑛𝑛𝑠𝑠

𝑖𝑖=1
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Table 3.2 Results of method comparison (statistics of the estimated risks are determined 
with 5 runs with different random seeds) 

(a) 5 assets (precise risk = 2.205)  (b) 10 assets (precise risk = 7.527) 
Method Average 

risk 
Standard 
deviation 

Max Min  Method Average 
risk 

Standard 
deviation 

Max Min 

TMCMC 2.188 0.024 2.222 2.161  TMCMC 7.534 0.080 7.612 7.420 
MC 2.186 0.002 2.188 2.185  MC 7.471 0.007 7.478 7.462 
Bound 2.205 0.000 2.205 2.205  Bound 7.519 0.001 7.521 7.517 

(c) 30 assets (precise risk = 39.45)  (d) 50 assets (precise risk = 91.41) 
Method Average 

risk 
Standard 
deviation 

Max Min  Method Average 
risk 

Standard 
deviation 

Max Min 

TMCMC 39.40 0.30 39.91 39.15  TMCMC 90.70 0.95 92.12 89.75 
MC 39.41 0.02 39.44 39.38  MC 91.71 0.07 91.79 91.62 
Bound 10.84 0.42 11.42 10.28  Bound 2.60 0.00 2.60 2.60 

3.3.2 Case II: Effectiveness in Risk Assessment involving Network Effects And “Grey 
Swan” Events 

Case I indicates that both TMCMC and MC can be effective in assessing risks from large numbers 
of assets. For Case II, a separate set of numerical experiments is constructed to further differentiate 
the effectiveness of TMCMC and MC. Herein, two issues in realistic problems of network risk 
assessment are addressed: 

(a) The existence of network effects, i.e., the failure consequence of multiple asset failures may 
be larger than the summation of the consequences of individual failures; 

(b) As a result, network risk may be dominate by “grey swan” events (low-probability events with 
high consequences) involving multiple asset failures. 

To this end, numerical experiments are designed as follows: 

• We consider a system consisting of 30 assets. Similar to Case I, reliability indices are randomly 
generated (uniformly between 0 and 3) and assigned to each asset. 

• To model “grey swan” events, only five assets with the highest reliability are considered to 
induce adverse consequences. The consequence of each individual failure is assumed to follow 
the equation below: 

 
Equation 3.9 Consequence of individual asset failure in Case II experiments 

where 𝛽𝛽𝑖𝑖 = reliability index, 𝑖𝑖 is the rank in the ordered asset list (𝑖𝑖 = 26, 27, … , 30 for the top 
five most reliable assets), and 𝑛𝑛𝑠𝑠 = 30 is the total number of assets. 

• To model the network effect, the following two assumptions are adopted: (a) no matter how 
many assets fail, the network consequence only appears if at least one of the top five most 
reliable assets fails; (b) when more than one of the top five assets fail, the network consequence 
is the product of individual failure consequences determined by Equation 3.9. 

𝐶𝐶𝑖𝑖 = 10
(𝑖𝑖−1)𝛽𝛽𝑖𝑖
𝑛𝑛𝑠𝑠−1  
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Since only 5 out of the 30 assets are relevant to network risk, the precise value of network risk can 
be determined by parsing through all (25−1=) 31 system states that have adverse effects. On the 
other hand, TMCMC and MC methods are implemented respectively to estimate the network risk 
involving all 30 assets. Each method is implemented for 10 times to derive statistics. Figure 3.2 
shows the estimated network risks using both methods, presented in the form of a box-whisker 
plot. Again, TMCMC can accurately estimate the network risk in Case II experiments. The 
percentage error of the estimated risk ranges from -11.31% to +7.18% compared to the precise 
value (45.001), with the mean of the 10 implementations closely matching the precise value 
(44.659 vs 45.001). In contrast, most of the 10 MC implementations yield severely underestimated 
risk due to the lack of representation of “grey swan” events among the samples. Occasionally, the 
“grey swan” events may be overrepresented, yielding drastically overestimated risk. In summary, 
the MC method fails to reliably estimate risk due to the difficulty in sampling “grey swan” events. 

 
Figure 3.2 Comparison of results in Case II experiments (considering network effects and 

grey swan events)1 

3.4 CASE STUDY WITH OREGON HIGHWAY NETWORK 

In this section, a transportation network of a realistic scale is analyzed using the TMCMC method. 
The case study is focused on the entire Oregon highway network with thousands of vulnerability 
bridges. The reliability indices of each link with vulnerable bridges are randomly assigned similar 
to what is performed in Section 3.3. Due to this random assignment of link reliability, the results 
of this case study are only used for algorithmic validation and should not be regarded as the true 
risk related to the Oregon highway network. The goal herein is to validate the effectiveness of the 
TMCMC method for realistic large-scale networks. 

 
 
1 In the box-whisker plot, the box encloses data from the 25th to the 75th percentiles, and the whiskers are minimum 

and maximum values among the data. The solid and the dash lines between the whiskers are median and mean 
values, respectively. 
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3.4.1 Developing Network Model for Oregon Highway System 

The geospatial data related to the Oregon highway network are extracted from OpenStreetMap1 
database (Contributors 2022). To focus on highway networks, only road segments labeled as 
“motorway”, “trunk”, and “primary” are extracted (Contributors 2022). This filter allows us to 
cover the majority of key highway bridges managed by Oregon Department of Transportation 
(ODOT). The raw geospatial data are converted to a directed graph model using OSMnx, a Python-
based tool to extract, model, analyze, and visualize street networks and other geospatial features 
from OpenStreetMap15 (Boeing 2017). Details related to the data extract and model creation are 
provided in Appendix D.  

 
Figure 3.3 Oregon highway network model (from OpenStreetMap15) 

Figure 3.3 shows the highway network under consideration. Boundary nodes representing the 
nodes into and out of the State of Oregon are also highlighted in Figure 3.3. OD pairs are selected2 
from these boundary nodes to estimate the maximum flow capacity through the highway network 
(referred to hereafter as the throughput). The nominal flow capacity of a link is computed using 
the following equation: 

 
Equation 3.10 Nominal link capacity 

 
 
1 The U.S. Government does not endorse products or manufacturers. They are included for informational purposes 

only and are not intended to reflect a preference, approval, or endorsement of any one product or entity. 
2 Any two boundary nodes more than 50 miles apart are assumed to be a valid OD pair for the determination of 

network throughput. 

𝑓𝑓𝑖𝑖 = 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ⋅
𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛
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where 𝑓𝑓𝑖𝑖 = capacity of link 𝑖𝑖; 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = number of lanes; 𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = speed limit (mph); 𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 = nominal 
speed on a highway, assumed to be 60 mph in this study. Both the lane numbers and the speed 
limits are available from OpenStreetMap for all links. If a link contains multiple lane numbers and 
speed limits, the minimum lane number and the average speed limit are substituted into Equation 
3.10 to compute the link capacity.  

The graph in Figure 3.3 contains 6,437 nodes and 10,637 links. Among the links, 1,938 links carry 
bridges (referred to hereafter as bridge links) that may fail due to either deterioration or extreme 
events. Similar to the previous numerical examples, the reliability index of each bridge link is 
randomly assigned by uniformly sampling between 0 and 3. In practice, three steps can be 
implemented to estimate these reliability indices: 

(a) Locate all bridges on a link: this can be achieved with geo-processing tools1 widely available 
in common GIS platforms (e.g., QGIS2).  

(b) Conduct structural reliability or fragility analysis to compute the reliability indices of all 
bridges on the link 

(c) Carry out system reliability analysis for a series system (Ditlevsen & Madsen 2005; Der 
Kiureghian 2022) to determine link reliability. 

If a bridge link fails, it is assumed that all traffic on the link will be diverted to a local detour near 
the link, modeled by reducing the link capacity to (1 lane × 20 mph / 60 mph =) 0.333. This 
reduction decreases the throughput of the network. This decrease in throughput, normalized by the 
throughput of the intact network, is used to assess the indirect risk of bridge failures. Decreases in 
throughput exhibit the network effect since the consequence from multiple link failures is generally 
different from the summation of consequences from individual link failures.  

To achieve efficient computation of network throughput, the highway network in Figure 3.3 is 
converted to a computational graph containing only information needed for the throughput 
calculation. Figure 3.4 shows the computational graph generated with NetworkX18, a Python 
package for creating and analyzing complex networks (Hagberg et al. 2008). Note that this graph 
only preserves (a) the connections between different nodes and (b) link capacities needed for the 
flow calculation. It does not contain geospatial properties of nodes and links. Instead, the graph is 
presented in Figure 3.4 using spectral layout.  

 
 
1 For instance, a step-by-step implementation within QGIS can be found via this link: 

https://gis.stackexchange.com/questions/381056/find-nearest-line-feature-from-point-in-qgis  
2 The U.S. Government does not endorse products or manufacturers. They are included for informational purposes 

only and are not intended to reflect a preference, approval, or endorsement of any one product or entity. 

https://gis.stackexchange.com/questions/381056/find-nearest-line-feature-from-point-in-qgis
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Figure 3.4 Computational graph of Oregon highway network 

3.4.2 Mobility Risk Assessment of Oregon Highway Network 

Given the network effect, indirect risk assessment for all bridge links constitutes a high 
dimensional problem involving 1,938 binary variables. At this scale, the risk bound method no 
longer works based on the results from previous numerical examples. It is also not clear whether 
there are “grey swan” events dominating the network risk. Therefore, network risk assessment is 
carried out using the TMCMC method. Table 3.3 summarizes the TMCMC parameters used for 
the network risk assessment. 

Table 3.3 TMCMC parameters for Oregon highway network 
Parameter Value 
Prior standard deviation 1.0 
Resampling rate 10% 
Number of samples per stage 8000 
COV limit for stage evolution 0.2 
Number of chains during MCMC 80 
Number of burn-in samples during MCMC 1000 
Number of samples to skip during MCMC 10 
Proposal standard deviation during MCMC 0.5 

Using the TMCMC method, the mobility risk of this network is estimated at 0.3360. This indicates 
that given the failure probabilities of all 1,938 bridge links, the expected decrease in flow capacity 
is 33.60%. The computation is carried out on a stack server using 80 processes and has a wall-
clock runtime of 22.66 hours. In total, 44,213 unique system states are analyzed. The result herein 
demonstrates the effectiveness of the TMCMC method in a realistic risk assessment setting. 

In addition to risk estimation, a useful byproduct of the TMCMC method is the samples generated 
in the last stage. Based on the derivation of TMCMC, system states frequently appearing in the 
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last stage of sampling represent failure patterns that have large contributions to the network risk. 
Figure 3.5 presents the failure patterns associated with the top three most frequent samples in the 
last stage of TMCMC sampling. These identified assets provide valuable insights into intervention 
priorities that can have the most significant benefit in reducing risk. It should be noted that the 
results in Figure 3.5 hinges on various assumptions adopted in the case study. For instance, the 
reliability indices of bridges are randomly assigned instead of derived from asset conditions or 
fragilities. In collaboration with ODOT engineers, a calibrated case study with realistic input will 
be pursued in the second phase of the project. 

 
Figure 3.5 High risk bridge links (ranks represent the 1st, 2nd, and 3rd most frequent 

samples in the last stage of TMCMC sampling) 

3.5 SUMMARY 

Chapter 3 introduces an effective and efficient method to assess indirect risk of transportation 
systems when the network performance indicator exhibits considerable network effects. The 
effectiveness of the mobility risk assessment method is demonstrated through a number of 
analytical examples and a real-world case study on the Oregon highway network. 

Compared to existing methods, the advantages of the new TMCMC method becomes ever more 
salient when (a) hundreds to thousands of assets are involved, (b) indirect consequences exhibit 
considerable network effects, and/or (c) the network risk is dominated by a small number of low 
probability, high consequence events. In addition to assessing risk, TMCMC is also capable of 
identifying routes and assets that contribute the most to the network risk, thereby offering insights 
to intervention planning. 
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Although the formulation and case study are primarily focused on network throughput, the network 
performance indicator can be adapted to other measures that may be relevant to the decision-
making. For instance, if the link capacities are set to one for intact links and zero for failed links, 
the maximum flow capacity analyzed herein directly reduces to the connectivity between OD pairs. 
This adaptation can be useful when the risk is assessed in terms of the community’s accessibility 
to critical public services after a disaster event. 
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CHAPTER 4 

CONCLUSIONS AND NEXT STEPS 

Practical frameworks and methods for risk-based bridge and tunnel management are presented in 
this report. The research presented herein is focused on the consistent and objective risk assessment 
of critical transportation assets. Both direct and indirect consequences are considered. For direct 
risk assessment, the emphasis is on the integration of structural deterioration and extreme event 
risk as well as the implementation in and implications to transportation asset management. For 
indirect risk assessment, the focus is on the development of an effective method to consider 
system-level user risks (e.g., network throughput) that rely on the network topology of 
interconnected assets. 

The following conclusions can be drawn from Phase I study: 

• (Chapter 1) Risks from structural deterioration and extreme events can be integrated to obtain 
lifetime risks expressed in monetary units. This integration allows for risk-based bridge and 
tunnel management to better coordinate between condition preservation and risk mitigation 
activities. To realize these benefits, it is important to provide objective risk estimates that are 
consistent across different hazards, analysis tools, and transportation agencies. 

• (Chapter 2) To achieve objective risk assessment, a novel approach based on weighted hazard 
scenarios is established to fill the gap between risk analysis and asset management. Rather than 
rely on expert elicitation to identify hazard scenarios, the new approach can generate scenarios 
weighted by hazard intensities and frequencies, structural fragilities, and damage 
consequences. This enables accurate risk assessment that can be consistently applied to 
different hazards and limits biases from the agency or its analysts. Compared to existing risk 
assessment methods in transportation asset management systems, the new approach can yield 
much higher accuracy with the same number of hazard scenarios.  

• (Chapter 2) The new approach for objective risk assessment is also applicable to analyses 
involving interacting hazards such as the analysis of seismic risk compounded by structural 
deterioration. For stationary hazards (i.e., hazard frequency and intensity do not change over 
time), it is found that as long as the deterioration effect is reflected in the expected 
consequences for different hazard scenarios, the same set of hazard scenarios can be used over 
the entire service life of the structure without introducing noticeable errors. It is also 
demonstrated that inaccurate risk assessment may obscure the benefit-to-cost ratios of different 
maintenance strategies that have different effects on deterioration. Therefore, the approach 
enables risk-based transportation asset management. 

• (Chapter 3) An effective and efficient method is developed to assess the indirect risk of large-
scale transportation asset networks. The advantage of the new method is especially salient 
when (a) the performance indicator exhibits network effects, i.e., when the system-level failure 
consequences is more severe than the sum of consequences of individual failures, and (b) when 
the network risk is dominated by low probability, high consequence events. The new method 
can handle regional transportation networks of realistic scales (e.g., hundreds to thousands of 
assets). In addition to assessing risk, the method is also capable of identifying routes and assets 
that contribute the most to the network risk, thereby offering insights to intervention planning. 
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Built upon the results from Phase I study, the following steps may be taken for Phase II and future 
studies: 

• Phase II study should focus on the further validation of case study results presented in Chapter 
3. There are several fictitious assumptions adopted in the case study to illustrate the real-world 
capability of the new approach to assess indirect risk. Phase II will examine and improve these 
assumptions such as the proper consideration of condition ratings when assigning asset failure 
probabilities. The identified links crucial to the system performance will be compared with the 
critical links established empirically by the transportation agencies. Overlapping and 
differences should be investigated. 

• The risk integral hinges on several models that deserve further investigation, including (a) the 
probabilities of service disruption for deteriorated assets in different condition states and (b) 
the time- or condition-based fragility curves that consider the effect of deterioration on 
structural vulnerability under extreme events. 

• For the illustration of the risk-based asset management framework and methodology, seismic 
hazards have been heavily relied upon due to their relative maturity in terms of hazard 
characterization and structural fragility models. Although this project points to a principled 
approach to other hazards, application to non-seismic hazards and the associated 
knowledge/data gaps should be further investigated. 

• For indirect risk assessment, this study focuses primarily on network throughput. However, 
the approach to network risk assessment should also be adaptable to other system-level 
performance measures that may be relevant to different decision-making scenarios. For 
instance, the connectivity between origin-destination pairs can be useful when hazard risk is 
assessed in terms of communities’ accessibility to critical public services after a disaster event. 
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APPENDIX A GAUSSIAN QUADRATURE FOR NUMERICAL INTEGRATION 

An 𝑛𝑛-point Gaussian quadrature is a rule to carry out integration numerically using integrand 
values at 𝑛𝑛 strategically selected locations (termed integration points) and their associated weights 
(Chapra & Canale 2021). The most common Gaussian quadrature is the Gauss-Legendre 
quadrature, which is given as follows for a one-dimensional (1D) integral over domain [−1, 1] 
(Abramowitz & Stegun 1972): 

 
Equation A.1 Gauss-Legendre quadrature 

where 𝑓𝑓(𝜉𝜉) = integrand function; 𝜉𝜉𝑖𝑖 (𝑖𝑖 = 1,2, … ,𝑛𝑛) = 𝑛𝑛 integration points within [−1, 1]; 𝜂𝜂𝑖𝑖 = the 
associated weights. It is worth mentioning that the quadrature rule is exact if 𝑓𝑓(𝜉𝜉) is a polynomial 
of up to 2𝑛𝑛 − 1 degrees (Weisstein 1995). Therefore, if 𝑓𝑓(𝜉𝜉) can be reasonably approximated by 
a polynomial of up to 2𝑛𝑛 − 1 degrees, the error of this quadrature can be small. Also, the domain 
[−1,1]  can be easily converted to any definite integral domain through transformation 
(Abramowitz & Stegun 1972). When singularities arise at the endpoints of the integral domain or 
when semi-infinite or infinite intervals are involved, other Gaussian quadrature rules can be 
applied, such as Chebyshev-Gauss or Gauss-Hermite quadrature (Weisstein 1995). 

Given the number of integration points 𝑛𝑛, the integration points 𝜉𝜉𝑖𝑖 and weights 𝜂𝜂𝑖𝑖 are independent 
of the integrand function and can be found in several references (e.g., Weisstein 1995). Table A.1 
shows the integration points and weights for 𝑛𝑛 = 2 to 𝑛𝑛 = 6 However, given an acceptable level 
of the approximation error, the form of 𝑓𝑓(𝜉𝜉) can affect the number of integration points needed. 
Specifically, if a function can be well approximated by a lower order polynomial, the required 
number of integration points is small, and vice versa. 

Table A.1 Integration points and weights for Gauss-Legendre quadrature 
Number of integration points 𝑛𝑛 Integration point 𝜉𝜉𝑖𝑖 Weight 𝜂𝜂𝑖𝑖 
𝑛𝑛 = 2 −0.5774, 0.5774 1 
𝑛𝑛 = 3 −0.7746, 0, 0.7746 0.5556, 0.8889, 0.5556 
𝑛𝑛 = 4 −0.8611, −0.3340, 0.3340, 0.8611 0.3479, 0.6521, 0.6521, 0.3479 
𝑛𝑛 = 5 −0.9062, −0.5385, 0, 

0.5385, 0.9062 
0.2369, 0.4786, 0.5689, 
0.4786, 0.2369 

𝑛𝑛 = 6 −0.9325, −0.6612, −0.2386, 
0.2386, 0.6612, 0.9325 

0.1713, 0.3608, 0.4679, 
0.4679, 0.3608, 0.1713 

APPENDIX B NETWORK MODELING WITH GRAPHS 

To determine flow capacity and many other transportation performance indicators, a transportation 
system needs to be converted to a network model, also known as a graph (Newman 2018). A graph 
consists of vertices (also known as nodes) and edges (also known as links). Both vertices and edges 
can be used to represent transportation assets (e.g., a bridge, tunnel, or pavement segment) 

� 𝑓𝑓(𝜉𝜉)
1

−1
𝑑𝑑𝑑𝑑 ≈�𝜂𝜂𝑖𝑖𝑓𝑓(𝜉𝜉𝑖𝑖)

𝑛𝑛

𝑖𝑖=1
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depending on their spatial scales. In network sciences, all graphs can be categorized as follows 
(Newman 2018): 

• Undirected simple graph: Any two nodes can only be connected by at most one link (hence the 
name “simple”). All links are undirected, i.e., they can carry bidirectional traffic.  

• Directed simple graph: These graphs are also simple graphs. However, the links have 
directions, i.e., a link connecting from node 𝑖𝑖 to node 𝑗𝑗 is different from a link connecting from 
node 𝑗𝑗 to node 𝑖𝑖. 

• Undirected multigraph: These graphs have undirected links. However, two nodes can be 
connected by more than one link. 

• Directed multigraph: These graphs are multigraphs with directed links. 

In the most general case, transportation networks are modeled as directed multigraphs. However, 
finding the maximum flow between an OD pair is challenging in this case due to the ambiguities 
of flow distribution among different links connecting two nodes (Newman 2018). Therefore, a 
directed multigraph obtained using OSMnx1 is converted to a directed simple graph by keeping 
only the shortest link among all links connecting two nodes (Boeing 2017). For major highway 
networks without one-way roads, it is also possible to convert directed simple graphs to undirected 
simple graphs to further enhance the computational efficiency. 

Using a directed simple graph, the maximum flow from the origin node 𝑠𝑠 to the destination node 
𝑡𝑡 can be formulated as the following optimization problem (Ahuja et al. 1993): 

 
Equation B.1 Formulation of maximum flow in a graph 

 
 
1 The U.S. Government does not endorse products or manufacturers. They are included for informational purposes 

only and are not intended to reflect a preference, approval, or endorsement of any one product or entity. 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑠𝑠𝑠𝑠  

               𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 

� 𝑓𝑓𝑠𝑠𝑠𝑠
𝑣𝑣:(𝑠𝑠,𝑣𝑣)∈ℰ

− � 𝑓𝑓𝑢𝑢𝑢𝑢
𝑢𝑢 :(𝑢𝑢 ,𝑠𝑠)∈ℰ

= 𝑣𝑣𝑠𝑠𝑠𝑠  

� 𝑓𝑓𝑡𝑡𝑡𝑡
𝑣𝑣:(𝑡𝑡 ,𝑣𝑣)∈ℰ

− � 𝑓𝑓𝑢𝑢𝑢𝑢
𝑢𝑢 :(𝑢𝑢 ,𝑡𝑡)∈ℰ

= −𝑣𝑣𝑠𝑠𝑠𝑠  

0 ≤ 𝑓𝑓𝑢𝑢𝑣𝑣 ≤ 𝑐𝑐𝑢𝑢𝑢𝑢     ∀(𝑢𝑢, 𝑣𝑣) ∈ ℰ 

� 𝑓𝑓𝑢𝑢𝑢𝑢
𝑢𝑢 :(𝑢𝑢 ,𝑣𝑣)∈ℰ

= � 𝑓𝑓𝑣𝑣𝑣𝑣
𝑢𝑢 :(𝑣𝑣,𝑢𝑢)∈ℰ

    ∀𝑣𝑣 ∈ 𝒱𝒱 ∖ {𝑠𝑠, 𝑡𝑡} 
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where 𝑣𝑣𝑠𝑠𝑠𝑠 = the flow from 𝑠𝑠 to 𝑡𝑡; 𝑓𝑓𝑖𝑖𝑖𝑖 = flow on link (𝑖𝑖, 𝑗𝑗) connecting from vertex 𝑖𝑖 to vertex 𝑗𝑗 if 
(𝑖𝑖, 𝑗𝑗) exists in the set of all edges ℰ; 𝑐𝑐𝑢𝑢𝑢𝑢 = capacity of link (𝑢𝑢, 𝑣𝑣), which is related to the number 
of lanes and the speed limit on the link; 𝒱𝒱 and 𝒱𝒱 ∖ {𝑠𝑠, 𝑡𝑡} = set of all vertices and set of all vertices 
except for 𝑠𝑠 and 𝑡𝑡, respectively. The first and second constraints in the formulation above represent 
that the total flow originating from node 𝑠𝑠 equal the total flow sinking into vertex 𝑡𝑡. The third 
constraint is the capacity constraint, i.e., the flow on an edge cannot exceed its capacity. The last 
constraint models the conservation of flows, i.e., the total flow into a vertex should equal that out 
of the same vertex. The maximum flow capacity between OD pairs within a network is an 
important performance indicator of transportation networks and other infrastructure systems with 
interconnected assets. 

APPENDIX C BAYESIAN UPDATING WITH TRANSITIONAL MARKOV CHAIN 
MONTE CARLO 

Based on Bayes’ theorem, the posterior PDF of system parameters conditioned on the observations 
of the system output can be expressed as 

 
Equation C.1 Bayesian theorem 

where 𝑓𝑓(𝛉𝛉) = prior PDF of system parameters 𝛉𝛉; 𝑓𝑓(𝐷𝐷|𝛉𝛉) = likelihood associated with system 
observation 𝐷𝐷 , i.e., the conditional PDF of 𝐷𝐷  given the system parameters 𝛉𝛉. The numerator 
𝑓𝑓(𝐷𝐷|𝛉𝛉) ⋅ 𝑓𝑓(𝛉𝛉)  describe the shape of the posterior PDF. The denominator ∫ 𝑓𝑓(𝐷𝐷|𝛉𝛉) ⋅ 𝑓𝑓(𝛉𝛉)d𝛉𝛉𝛉𝛉  
serves as a normalization constant so that 𝑓𝑓(𝛉𝛉|𝐷𝐷) satisfies the requirement of a PDF, i.e., the 
volume under the function is equal to 1. In the context of Bayesian updating, this normalization 
constant is also called the “evidence”. Sampling from posterior PDF 𝑓𝑓(𝛉𝛉|𝐷𝐷)  is challenging 
because of the following reasons: 

• The posterior PDF does not always follow an analytical distribution; 
• The evidence is only known by a factor, i.e., only the value of 𝑓𝑓(𝐷𝐷|𝛉𝛉) ⋅ 𝑓𝑓(𝛉𝛉) is known. 

Most Markov Chain Monte Carlo (MCMC) methods focus on solving the first challenge by 
directly sampling from a posterior distribution without knowing the evidence. Transitional Markov 
Chain Monte Carlo (TMCMC), first proposed by Ching & Chen (2007) and later refined by Betz 
et al. (2016), is an efficient method that can both generate posterior samples and estimate the 
evidence. It is the ability to estimate evidence that directly contributes to the accurate assessment 
of network risk. 

The connection between the evidence (i.e., denominator in Equation C.1) and the network risk 
formulated in Equation 3.5 is shown by equating the likelihood function 𝑓𝑓(𝐷𝐷|𝛉𝛉) with 𝐶𝐶[𝑇𝑇(𝛉𝛉)] in 
Equation 3.5. In this manner, the evidence in Bayesian updating (denominator in Equation C.1) 
becomes the network risk in Equation 3.5. This equivalence indicates that the consequence 
function 𝐶𝐶[𝑇𝑇(𝛉𝛉)] needs to be non-negative, i.e., asset damage does not improve the transportation 
performance. This is valid for most performance indicators including the flow-based indicator used 

𝑓𝑓(𝜽𝜽|𝐷𝐷) =
𝑓𝑓(𝐷𝐷|𝜽𝜽) ⋅ 𝑓𝑓(𝜽𝜽)

∫ 𝑓𝑓(𝐷𝐷|𝜽𝜽) ⋅ 𝑓𝑓(𝜽𝜽)𝑑𝑑𝜽𝜽𝜽𝜽
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herein. However, if total travel time is used, there might be rare cases when damaging an asset 
may decrease total travel time as in the case of Braess paradox (Bell & Iida 1997). In practice, this 
is more of an issue related to network design rather than network risk assessment. Therefore, 
negative 𝐶𝐶[𝑇𝑇(𝛉𝛉)] can be set to zero for network risk assessment based on total travel time. 

APPENDIX D GENERATING REGIONAL HIGHWAY NETWORK MODELS 

Transportation assets in an asset management system are typically organized in a relational 
database and presented as tables of bridge information. Although GIS data of individual assets 
may exist in this database, these data are not directly available as network models suitable for 
system-level performance analysis. Therefore, an automated procedure is developed to establish a 
graph model for a particular region of interest. 

Geospatial data of transportation structures and road networks are extracted from OpenStreetMap1, 
an open collaborative geographic database (Contributors 2022), through its application 
programming interface (API). Highway networks can be recovered by focusing on road segments 
labeled in OpenStreetMap20 as “motorway”, “trunk”, and “primary” (Contributors 2022). It should 
be noted that the geographic data obtained from OpenStreetMap20 are not the graph model needed 
for network analysis. In a geospatial database such as OpenStreetMap20, road segments are 
represented as polylines, which are designed to depict the geographic paths of roadways. The term 
“nodes” in OpenStreetMap20 refers to the points that make up a polyline. However, these nodes 
also include points that determine the shape of a curved roadway, not just significant points like 
intersections or endpoints of roads. Therefore, they do not always represent meaningful elements 
of a transportation network. Figure D.1 illustrates the process of converting polylines to proper 
links in a graph-theoretic network. 

 
Figure D.1 Conversion of polyline objects to network links using OSMnx20 

To achieve the conversion, OSMnx20 (Boeing 2017) is utilized to extract and model roadway 
networks from OpenStreetMap20. The tool directly generates a directed multigraph for the street 
network in a specific region of interest. It can also convert the multigraph to a simple graph by 
preserving only the link with the shortest length among each node pairs. The generated networks 
are graph objects in NetworkX20, a Python package for complex networks (Hagberg et al. 2008). 

 
 
1 The U.S. Government does not endorse products or manufacturers. They are included for informational purposes 

only and are not intended to reflect a preference, approval, or endorsement of any one product or entity. 
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